2019 Volume 9 Issue 3
Article Contents

Zhaohai Ma, Xin Wu, Rong Yuan, Yang Wang. MULTIDIMENSIONAL STABILITY OF PLANAR WAVES FOR DELAYED REACTION-DIFFUSION EQUATION WITH NONLOCAL DIFFUSION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 962-980. doi: 10.11948/2156-907X.20180190
Citation: Zhaohai Ma, Xin Wu, Rong Yuan, Yang Wang. MULTIDIMENSIONAL STABILITY OF PLANAR WAVES FOR DELAYED REACTION-DIFFUSION EQUATION WITH NONLOCAL DIFFUSION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 962-980. doi: 10.11948/2156-907X.20180190

MULTIDIMENSIONAL STABILITY OF PLANAR WAVES FOR DELAYED REACTION-DIFFUSION EQUATION WITH NONLOCAL DIFFUSION

  • Corresponding author: Email address: xinw2015@mail.bnu.edu.cn(X. Wu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China
  • In this paper, we consider the multidimensional stability of planar waves for a class of nonlocal dispersal equation in $n$-dimensional space with time delay. We prove that all noncritical planar waves are exponentially stable in $L^{\infty}(\mathbb{R}^n )$ in the form of ${\rm{e}}^{-\mu_{\tau} t}$ for some constant $\mu_{\tau} =\mu(\tau)>0$($\tau >0$ is the time delay) by using comparison principle and Fourier transform. It is also realized that, the effect of time delay essentially causes the decay rate of the solution slowly down. While, for the critical planar waves, we prove that they are asymptotically stable by establishing some estimates in weighted $L^1(\mathbb{R}^n)$ space and $H^k(\mathbb{R}^n) (k \geq [\frac{n+1}{2}])$ space.
    MSC: 35C07, 92D25, 35B35
  • 加载中
  • [1] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Math., 1978, 30(1), 33-76.

    Google Scholar

    [2] P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 2002, 273(1), 45-57. doi: 10.1016/S0022-247X(02)00205-6

    CrossRef Google Scholar

    [3] X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 1997, 2(1), 125-160.

    Google Scholar

    [4] I. L. Chern, M. Mei, X. Yang and Q. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 2015, 259(4), 1503-1541. doi: 10.1016/j.jde.2015.03.003

    CrossRef Google Scholar

    [5] J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 2014, 46(6), 3678-3704. doi: 10.1137/140953939

    CrossRef Google Scholar

    [6] G. Faye, Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation, Discrete Contin. Dyn. Syst., 2016, 36(5), 2473-2496.

    Google Scholar

    [7] R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 1937, 7, 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x

    CrossRef Google Scholar

    [8] R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete Contin. Dyn. Syst., 2012, 32(10), 3621-3649. doi: 10.3934/dcdsa

    CrossRef Google Scholar

    [9] T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 1997, 349(349), 257-269.

    Google Scholar

    [10] D. Khusainov, A. Ivanov and I. Kovarzh, Solution of one heat equation with delay, Nonlinear Oscil., 2009, 12(2), 260-282. doi: 10.1007/s11072-009-0075-3

    CrossRef Google Scholar

    [11] C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, Ⅱ, Comm. Partial Differential Equations, 1992, 17(11-12), 1901-1924. doi: 10.1080/03605309208820908

    CrossRef Google Scholar

    [12] Z. Ma and R. Yuan, Nonlinear stability of traveling wavefronts for delayed reaction-diffusion equation with nonlocal diffusion, Taiwanese J. Math., 2016, 20(4), 871-896. doi: 10.11650/tjm.20.2016.6884

    CrossRef Google Scholar

    [13] Z. Ma and R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, Int. J. Biomath., 2017, 10(05), 1750071. doi: 10.1142/S1793524517500711

    CrossRef Google Scholar

    [14] R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 1990, 321(1), 1-44.

    Google Scholar

    [15] H. Matano and M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation, J. Differential Equations, 2011, 251(12), 3522-3557. doi: 10.1016/j.jde.2011.08.029

    CrossRef Google Scholar

    [16] H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Partial Differential Equations, 2009, 34(9), 976-1002. doi: 10.1080/03605300902963500

    CrossRef Google Scholar

    [17] M. Mei, C. Ou and X. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 2010, 42(6), 2762-2790. doi: 10.1137/090776342

    CrossRef Google Scholar

    [18] M. Mei, C. Ou and X. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations (vol 42, pg 2762, 2010), SIAM J. Math. Anal., 2012, 44(1), 538-540.

    Google Scholar

    [19] M. Mei, J. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(3), 579-594. doi: 10.1017/S0308210500003358

    CrossRef Google Scholar

    [20] M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. Ser. B, 2011, 4, 379-401.

    Google Scholar

    [21] K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 1987, 302(2), 587-615.

    Google Scholar

    [22] W. Sheng, Multidimensional stability of V-shaped traveling fronts in time periodic bistable reaction-diffusion equations, Comput. Math. Appl., 2016, 72(6), 1714-1726. doi: 10.1016/j.camwa.2016.07.035

    CrossRef Google Scholar

    [23] H. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31(3), 514-534. doi: 10.1137/S0036141098346785

    CrossRef Google Scholar

    [24] V. A. Volpert and A. I. Volpert, Existence and stability of multidimensional travelling waves in the monostable case, Israel J. Math., 1999, 110(1), 269-292. doi: 10.1007/BF02808184

    CrossRef Google Scholar

    [25] J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I, Comm. Partial Differential Equations, 1992, 17(11-12), 1889-1899. doi: 10.1080/03605309208820907

    CrossRef Google Scholar

    [26] Z. Yu and R. Yuan, Existence, asymptotics and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response, Taiwanese J. Math., 2013, 17(6), 2163-2190. doi: 10.11650/tjm.17.2013.3794

    CrossRef Google Scholar

    [27] H. Zeng, Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations, Sci. China Math., 2014, 57(2), 353-366. doi: 10.1007/s11425-013-4617-x

    CrossRef Google Scholar

Article Metrics

Article views(3085) PDF downloads(567) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint