[1]
|
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Math., 1978, 30(1), 33-76.
Google Scholar
|
[2]
|
P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 2002, 273(1), 45-57. doi: 10.1016/S0022-247X(02)00205-6
CrossRef Google Scholar
|
[3]
|
X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 1997, 2(1), 125-160.
Google Scholar
|
[4]
|
I. L. Chern, M. Mei, X. Yang and Q. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 2015, 259(4), 1503-1541. doi: 10.1016/j.jde.2015.03.003
CrossRef Google Scholar
|
[5]
|
J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 2014, 46(6), 3678-3704. doi: 10.1137/140953939
CrossRef Google Scholar
|
[6]
|
G. Faye, Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation, Discrete Contin. Dyn. Syst., 2016, 36(5), 2473-2496.
Google Scholar
|
[7]
|
R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 1937, 7, 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x
CrossRef Google Scholar
|
[8]
|
R. Huang, M. Mei and Y. Wang, Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity, Discrete Contin. Dyn. Syst., 2012, 32(10), 3621-3649. doi: 10.3934/dcdsa
CrossRef Google Scholar
|
[9]
|
T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 1997, 349(349), 257-269.
Google Scholar
|
[10]
|
D. Khusainov, A. Ivanov and I. Kovarzh, Solution of one heat equation with delay, Nonlinear Oscil., 2009, 12(2), 260-282. doi: 10.1007/s11072-009-0075-3
CrossRef Google Scholar
|
[11]
|
C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, Ⅱ, Comm. Partial Differential Equations, 1992, 17(11-12), 1901-1924. doi: 10.1080/03605309208820908
CrossRef Google Scholar
|
[12]
|
Z. Ma and R. Yuan, Nonlinear stability of traveling wavefronts for delayed reaction-diffusion equation with nonlocal diffusion, Taiwanese J. Math., 2016, 20(4), 871-896. doi: 10.11650/tjm.20.2016.6884
CrossRef Google Scholar
|
[13]
|
Z. Ma and R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, Int. J. Biomath., 2017, 10(05), 1750071. doi: 10.1142/S1793524517500711
CrossRef Google Scholar
|
[14]
|
R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 1990, 321(1), 1-44.
Google Scholar
|
[15]
|
H. Matano and M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation, J. Differential Equations, 2011, 251(12), 3522-3557. doi: 10.1016/j.jde.2011.08.029
CrossRef Google Scholar
|
[16]
|
H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Partial Differential Equations, 2009, 34(9), 976-1002. doi: 10.1080/03605300902963500
CrossRef Google Scholar
|
[17]
|
M. Mei, C. Ou and X. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 2010, 42(6), 2762-2790. doi: 10.1137/090776342
CrossRef Google Scholar
|
[18]
|
M. Mei, C. Ou and X. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations (vol 42, pg 2762, 2010), SIAM J. Math. Anal., 2012, 44(1), 538-540.
Google Scholar
|
[19]
|
M. Mei, J. So, M. Li and S. Shen, Asymptotic stability of travelling waves for Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(3), 579-594. doi: 10.1017/S0308210500003358
CrossRef Google Scholar
|
[20]
|
M. Mei and Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. Ser. B, 2011, 4, 379-401.
Google Scholar
|
[21]
|
K. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 1987, 302(2), 587-615.
Google Scholar
|
[22]
|
W. Sheng, Multidimensional stability of V-shaped traveling fronts in time periodic bistable reaction-diffusion equations, Comput. Math. Appl., 2016, 72(6), 1714-1726. doi: 10.1016/j.camwa.2016.07.035
CrossRef Google Scholar
|
[23]
|
H. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31(3), 514-534. doi: 10.1137/S0036141098346785
CrossRef Google Scholar
|
[24]
|
V. A. Volpert and A. I. Volpert, Existence and stability of multidimensional travelling waves in the monostable case, Israel J. Math., 1999, 110(1), 269-292. doi: 10.1007/BF02808184
CrossRef Google Scholar
|
[25]
|
J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I, Comm. Partial Differential Equations, 1992, 17(11-12), 1889-1899. doi: 10.1080/03605309208820907
CrossRef Google Scholar
|
[26]
|
Z. Yu and R. Yuan, Existence, asymptotics and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response, Taiwanese J. Math., 2013, 17(6), 2163-2190. doi: 10.11650/tjm.17.2013.3794
CrossRef Google Scholar
|
[27]
|
H. Zeng, Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations, Sci. China Math., 2014, 57(2), 353-366. doi: 10.1007/s11425-013-4617-x
CrossRef Google Scholar
|