[1]
|
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2, 64-66. doi: 10.2969/jmsj/00210064
CrossRef Google Scholar
|
[2]
|
P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 1994, 184, 431-436. doi: 10.1006/jmaa.1994.1211
CrossRef Google Scholar
|
[3]
|
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 1941, 27, 222-224. doi: 10.1073/pnas.27.4.222
CrossRef Google Scholar
|
[4]
|
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 2011, 48.
Google Scholar
|
[5]
|
M. A. Khamsi, Quasicontraction mappings in modular spaces without ∆2- condition, Fixed Point Theory Appl., 2008, 6, Article ID 916187.
Google Scholar
|
[6]
|
H.-M. Kim and Y. Hong, Approximate quadratic mappings in modular spaces, Int. J. Pure Appl. Math., 2017, 116, 31-43.
Google Scholar
|
[7]
|
C. Kim and S. W. Park, A fixed point approach to the stability of additivequadratic functional equations in modular spaces, J. Chungcheong Math. Soc., 2015, 28, 321-330. doi: 10.14403/jcms.2015.28.2.321
CrossRef Google Scholar
|
[8]
|
P. M. Pardalos, P. G. Georgiev, H. M. Srivastava, Nonlinear Analysis: Stability, Approximation, and Inequalities, Springer Optimization and Its Applications, 2012, 68.
Google Scholar
|
[9]
|
J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 1992, 20, 185-190.
Google Scholar
|
[10]
|
J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki, 2001, 36, 63-72.
Google Scholar
|
[11]
|
J. M. Rassias, H.-M. Kim, Approximate (m.n)-Cauchy-Jensen mappings in quasi-β-normed spaces, Journal of Computational Analysis and Applications, 2014, 16, 346-358.
Google Scholar
|
[12]
|
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
CrossRef Google Scholar
|
[13]
|
Th. M. Rassias, Functional Equations, Inequalities, and Applications, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003.
Google Scholar
|
[14]
|
G. Sadeghi, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc., 2014, 37, 333-344.
Google Scholar
|
[15]
|
S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New York, 1960.
Google Scholar
|
[16]
|
K. Wongkum, P. Chaipunya, and P. Kumam, On the generalized Ulam- Hyers-Rassias stability of quadratic mappings in modular spaces without ∆2- conditions, J. Funct. Spaces, 2015, 6, Article ID 461719
Google Scholar
|