2019 Volume 9 Issue 2
Article Contents

Hark-Mahn Kim, wan-Yong Shin. APPROXIMATE LIE *-DERIVATIONS ON ρ-COMPLETE CONVEX MODULAR ALGEBRAS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 765-776. doi: 10.11948/2156-907X.20180166
Citation: Hark-Mahn Kim, wan-Yong Shin. APPROXIMATE LIE *-DERIVATIONS ON ρ-COMPLETE CONVEX MODULAR ALGEBRAS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 765-776. doi: 10.11948/2156-907X.20180166

APPROXIMATE LIE *-DERIVATIONS ON ρ-COMPLETE CONVEX MODULAR ALGEBRAS

  • Corresponding author: Email address:hyshin31@cnu.ac.kr(H.-Y. Shin)
  • Fund Project: The authors were supported by National Research Foundation of Korea(NRF) funded by the Ministry of Education (2016R1D1A3B03930971)
  • In this paper, we obtain generalized Hyers–Ulam stability results of a $ (m,n) $-Cauchy-Jensen functional equation associated with approximate Lie $ * $-derivations on $ \rho $-complete convex modular $ * $-algebras $ \chi_\rho $ with $ \Delta_\mu $-condition on the convex modular $ \rho. $
    MSC: 39B52, 39B74, 47H09
  • 加载中
  • [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2, 64-66. doi: 10.2969/jmsj/00210064

    CrossRef Google Scholar

    [2] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 1994, 184, 431-436. doi: 10.1006/jmaa.1994.1211

    CrossRef Google Scholar

    [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 1941, 27, 222-224. doi: 10.1073/pnas.27.4.222

    CrossRef Google Scholar

    [4] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications, 2011, 48.

    Google Scholar

    [5] M. A. Khamsi, Quasicontraction mappings in modular spaces without2- condition, Fixed Point Theory Appl., 2008, 6, Article ID 916187.

    Google Scholar

    [6] H.-M. Kim and Y. Hong, Approximate quadratic mappings in modular spaces, Int. J. Pure Appl. Math., 2017, 116, 31-43.

    Google Scholar

    [7] C. Kim and S. W. Park, A fixed point approach to the stability of additivequadratic functional equations in modular spaces, J. Chungcheong Math. Soc., 2015, 28, 321-330. doi: 10.14403/jcms.2015.28.2.321

    CrossRef Google Scholar

    [8] P. M. Pardalos, P. G. Georgiev, H. M. Srivastava, Nonlinear Analysis: Stability, Approximation, and Inequalities, Springer Optimization and Its Applications, 2012, 68.

    Google Scholar

    [9] J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 1992, 20, 185-190.

    Google Scholar

    [10] J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki, 2001, 36, 63-72.

    Google Scholar

    [11] J. M. Rassias, H.-M. Kim, Approximate (m.n)-Cauchy-Jensen mappings in quasi-β-normed spaces, Journal of Computational Analysis and Applications, 2014, 16, 346-358.

    Google Scholar

    [12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297-300. doi: 10.1090/S0002-9939-1978-0507327-1

    CrossRef Google Scholar

    [13] Th. M. Rassias, Functional Equations, Inequalities, and Applications, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003.

    Google Scholar

    [14] G. Sadeghi, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc., 2014, 37, 333-344.

    Google Scholar

    [15] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New York, 1960.

    Google Scholar

    [16] K. Wongkum, P. Chaipunya, and P. Kumam, On the generalized Ulam- Hyers-Rassias stability of quadratic mappings in modular spaces without2- conditions, J. Funct. Spaces, 2015, 6, Article ID 461719

    Google Scholar

Article Metrics

Article views(1729) PDF downloads(590) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint