2019 Volume 9 Issue 2
Article Contents

Shanshan Chen, Hong Yang, Junjie Wei. GLOBAL DYNAMICS OF TWO PHYTOPLANKTON-ZOOPLANKTON MODELS WITH TOXIC SUBSTANCES EFFECT[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 796-809. doi: 10.11948/2156-907X.20180187
Citation: Shanshan Chen, Hong Yang, Junjie Wei. GLOBAL DYNAMICS OF TWO PHYTOPLANKTON-ZOOPLANKTON MODELS WITH TOXIC SUBSTANCES EFFECT[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 796-809. doi: 10.11948/2156-907X.20180187

GLOBAL DYNAMICS OF TWO PHYTOPLANKTON-ZOOPLANKTON MODELS WITH TOXIC SUBSTANCES EFFECT

  • Corresponding author: Email address:weijj@hit.edu.cn(J. Wei)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11771109)
  • In this paper, we investigate phytoplankton-zooplankton models with toxic substances effect and two different kinds of predator functional responses. For Holling type Ⅱ predator functional response, it is shown that the local stability of the positive equilibrium implies global stability if there exists a unique positive equilibrium. When there exist multiple positive equilibria, the local stability of the positive equilibrium with small phytoplankton population density implies that the model occurs bistable phenomenon. These results also hold for Holling type Ⅲ predator functional response under certain conditions.
    MSC: 34D20
  • 加载中
  • [1] C. Castillo-Chavez, Z. Feng, and W. Huang, Global dynamics of a plant-herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 2012, 72(4), 1002-1020.

    Google Scholar

    [2] J. Chattopadhayay, R. R. Sarkar, and A. El Abdllaoui, A delay differential equation model on harmful algal blooms in the presence of toxic substances, IMA J. Appl. Math., 2002, 19(2), 137-161.

    Google Scholar

    [3] J. Chattopadhayay, R. R. Sarkar, and S. Mandal, Toxin-producing plankton may act as a biological control for planktonic blooms-Field study and mathematical modelling, J. Theor. Biol., 2002, 215(3), 333-344. doi: 10.1006/jtbi.2001.2510

    CrossRef Google Scholar

    [4] J.-P Chen and H.-D Zhang, The qualitative analysis of two species predator-prey model with Holling type Ⅲ functional response, Appl. Math. Mech., 1986, 77(1), 77-86.

    Google Scholar

    [5] K.-S. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 1981, 12(4), 541-548.

    Google Scholar

    [6] Z. Feng, R. Liu, and D. L. DeAngelis, Plant-herbivore interactions mediated by plant toxicity, Theor. Popul. Biol., 2008, 73(3), 449-459.

    Google Scholar

    [7] G. M. Hallegraeff, A review of harmful algae blooms and the apparent global increase, Phycologia, 1993, 32, 79-99. doi: 10.2216/i0031-8884-32-2-79.1

    CrossRef Google Scholar

    [8] S.-B. Hsu, On global stability of a predator-prey system, Math. Biosci., 1978, 39(1-2), 1-10.

    Google Scholar

    [9] S.-B. Hsu, A survey of constructing lyapunov functions for mathematical models in population biology, Taiwanese J. Math., 2005, 9(2), 151-173. doi: 10.11650/twjm/1500407791

    CrossRef Google Scholar

    [10] S.-B Hsu and T.-W Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 1995, 55(3), 763-863.

    Google Scholar

    [11] M. Javidi and N. Nyamoradi, Dynamic analysis of a fractional order phytoplankton model, J. Appl. Anal. Comput., 2013, 3(4), 343-355.

    Google Scholar

    [12] S. Khare, O. P. Misra, and J. Dhar, Role of toxin producing phytoplankton on a plankton ecosystem, Nonlinear Anal. Hybri., 2010, 4(3), 496-502. doi: 10.1016/j.nahs.2009.11.006

    CrossRef Google Scholar

    [13] W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a prey refuge, J. Differential Equations, 2006, 231(2), 534-550. doi: 10.1016/j.jde.2006.08.001

    CrossRef Google Scholar

    [14] R. Liu, Z. Feng, H. Zhu, and D. L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 2008, 245(2), 442-467. doi: 10.1016/j.jde.2007.10.034

    CrossRef Google Scholar

    [15] Y. Lv, J. Cao, J. Song, R. Yuan, and Y. Pei, Global stability and Hopf-bifurcation in a zooplankton-phytoplankton model, Nonlinear Dyn., 2014, 76, 345-366. doi: 10.1007/s11071-013-1130-2

    CrossRef Google Scholar

    [16] B. Mukhopadhyay and R. Bhattacharyya, A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms, J. Biol. Phys., 2005, 31, 3-22. doi: 10.1007/s10867-005-2306-x

    CrossRef Google Scholar

    [17] P. Y. H. Pang and M. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., 2004, 88(3), 135-157.

    Google Scholar

    [18] R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator-prey systems: Strong interaction case, J. Differential Equations, 2009, 247(3), 866-886.

    Google Scholar

    [19] M. Rehim and M. Imran, Dynamical analysis of a delay model of phytoplankton-zooplankton interaction, Appl. Math. Model., 2012, 36(2), 638-647.

    Google Scholar

    [20] S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 2001, 61(4), 1445-1472.

    Google Scholar

    [21] T. Saha and M. Bandyopadhyay, Dynamical analysis of toxin producing phytoplankton-zooplankton interaction, Nonlinear Anal. Real World Appl., 2009, 10, 314-332. doi: 10.1016/j.nonrwa.2007.09.001

    CrossRef Google Scholar

    [22] J. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey system with Holling type Ⅲ functional response, J. Dyn. Diff. Equat., 2017, 29(4), 1383-1409. doi: 10.1007/s10884-016-9517-7

    CrossRef Google Scholar

    [23] Y. Wang, H. Wang, and W. Jiang, Hopf-transcritical bifurcation in toxic phytoplankton-zooplankton model with delay, J. Math. Anal. Appl., 2014, 415(2), 574-594. doi: 10.1016/j.jmaa.2014.01.081

    CrossRef Google Scholar

    [24] Y. Wang, and W. Jiang, Bifurcations in a delayed differential-algebraic plankton economic system, J. Appl. Anal. Comput., 2017, 7(4), 1431-1447.

    Google Scholar

    [25] G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence, SIAM. J. Appl. Math., 1988, 48(3), 592-606.

    Google Scholar

    [26] D. Xiao and H. Zhu, Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 2006, 66(3), 802-819.

    Google Scholar

    [27] F. Yi, J. Wei, and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 2009, 246(5), 1944-1977. doi: 10.1016/j.jde.2008.10.024

    CrossRef Google Scholar

    [28] C.-H. Zhang and X.-P. Yan, Formation of time patterns in a diffusive plant-herbivore system with toxin-determined functional response, Int. J. Biomath., 2015, 8(4), 1550051.

    Google Scholar

    [29] H. Zhao, X. Huang, and X. Zhang, Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms, Physica A, 2015, 421, 300-315. doi: 10.1016/j.physa.2014.11.042

    CrossRef Google Scholar

    [30] J. Zhao, J. P. Tian, and J. Wei, Minimal model of plankton systems revisited with spatial diffusion and maturation delay, Bull. Math. Biol., 2016, 78(3), 381-412. doi: 10.1007/s11538-016-0147-3

    CrossRef Google Scholar

    [31] J. Zhao and J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Anal.: Real World Appl., 2015, 22, 66-83. doi: 10.1016/j.nonrwa.2014.07.010

    CrossRef Google Scholar

    [32] Y. Zhao, Z. Feng, Y. Zheng, and X. Cen, Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 2015, 258(8), 2847-2872. doi: 10.1016/j.jde.2014.12.029

    CrossRef Google Scholar

    [33] J. Zhou and C. Mu, Coexistence states of a Holling type-Ⅱ predator-prey system, J. Math. Anal. Appl., 2010, 369(2), 555-563. doi: 10.1016/j.jmaa.2010.04.001

    CrossRef Google Scholar

    [34] H. Zhu, S. A. Campbell, and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic function response, SIAM J. Appl. Math., 2002, 63(2), 636-682.

    Google Scholar

Figures(1)

Article Metrics

Article views(3107) PDF downloads(929) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint