2019 Volume 9 Issue 2
Article Contents

Yan Zhou, Jie Song, Tong Han. SOLITARY WAVES, PERIODIC PEAKONS, PSEUDO-PEAKONS AND COMPACTONS GIVEN BY THREE ION-ACOUSTIC WAVE MODELS IN ELECTRON PLASMAS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 810-828. doi: 10.11948/2156-907X.20190028
Citation: Yan Zhou, Jie Song, Tong Han. SOLITARY WAVES, PERIODIC PEAKONS, PSEUDO-PEAKONS AND COMPACTONS GIVEN BY THREE ION-ACOUSTIC WAVE MODELS IN ELECTRON PLASMAS[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 810-828. doi: 10.11948/2156-907X.20190028

SOLITARY WAVES, PERIODIC PEAKONS, PSEUDO-PEAKONS AND COMPACTONS GIVEN BY THREE ION-ACOUSTIC WAVE MODELS IN ELECTRON PLASMAS

  • Corresponding author: Email address:zy4233@hqu.edu.cn(Y. Zhou) 
  • Fund Project: This research was partially supported by the National Natural Science Foundation of China (11871231, 11162020)
  • The nonlinear ion-acoustic oscillations models are governed by three partial differential equation systems. Their travelling wave equations are three first class singular traveling wave systems depending on different parameter groups, respectively. By using the method of dynamical system and the theory of singular traveling wave systems, in this paper, it is shown that there exist parameter groups such that these singular systems have solitary wave solutions, pseudo-peakons, periodic peakons and compactons as well as kink and anti-kink wave solutions. The results of this paper complete the studies of three papers [5, 13] and [14].
    MSC: 34C60, 35Q51, 35C05, 35C07, 35C0
  • 加载中
  • [1] G. C. Das, Rotation as a progenitor of various solitary waves in magnetized plasmas, Chaos Solit. Fract., 2017, 101, 33-40. doi: 10.1016/j.chaos.2017.05.007

    CrossRef Google Scholar

    [2] S. Ghebache, M. Tribeche, Nonlinear ion-acoustic double-layers in electronegative plasmas with electrons featuring Tsallis distribution, Physica A, 2016, 447, 180-187. doi: 10.1016/j.physa.2015.12.026

    CrossRef Google Scholar

    [3] S. Ghebache, M. Tribeche, Arbitrary amplitude ion-acoustic solitary waves in electronegative plasmas with electrons featuring Tsallis distribution, Physica A, 2017, 483, 193-200. doi: 10.1016/j.physa.2017.04.183

    CrossRef Google Scholar

    [4] W. F. El Taibany, M. Tribeche, Nonlinear ion-acoustic solitary waves in electronegative plasmas with electrons featuring Tsallis distribution, Phys. Plasmas, 2012, 19, 024507. doi: 10.1063/1.3684232

    CrossRef Google Scholar

    [5] M. M. Hatami, M. Tribeche, Arbitrary amplitude ion-acoustic solitary waves in a two-temperature nonextensive electron plasma, Physica A, 2018, 491, 55-63. doi: 10.1016/j.physa.2017.09.004

    CrossRef Google Scholar

    [6] J. Li, G. Chen, Bifurcations of travelling wave solutions for four classes of nonlinear wave equations, 2005, 15(12), 3973-3998.

    Google Scholar

    [7] J. Li, G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17, 4049-4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [8] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.

    Google Scholar

    [9] J. Li, W. Zhou, G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifurcation and Chaos, 2016, 26(12), 1650207. doi: 10.1142/S0218127416502072

    CrossRef Google Scholar

    [10] J. Li, Periodic peakons, pseudo-peakons and compactons of ion-acoustic wave model in electronegative plasmas with electrons featuring tsallis distribution, Int. J. of Bifurcation and Chaos, 2018, 28(1), 1850015. doi: 10.1142/S0218127418500153

    CrossRef Google Scholar

    [11] J. Li, Solitary waves, periodic peakons and pseudo-peakons of the nonlinear acoustic wave model in rotating magnetized plasma, Int. J. of Bifurcation and Chaos, 2018, 28(4), 1850054. doi: 10.1142/S0218127418500542

    CrossRef Google Scholar

    [12] J. Li, Geometric properties and exact travelling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. of Nonlinear Modeling and Analysis, 2019, 1(1), 1-10.

    Google Scholar

    [13] O. R. Rufai, R. Bharuthram, Obliquely propagating low-frequency magnetospheric electrostatic solitary waves in the presence of an oxygen-ion beam, Commun Nonlinear Sci. Numer. Simulat., 2019, 68, 160-168. doi: 10.1016/j.cnsns.2018.08.006

    CrossRef Google Scholar

    [14] S. Sultana1, R. Schlickeiser, Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas, Astrophys Space Sci., 2018, 363, 103. doi: 10.1007/s10509-018-3317-y

    CrossRef Google Scholar

    [15] R. Z. Sagdeev, Reviews of Plasma Physics, in: M. A. Leontovich (Ed. ), Consultants Bureau, New York, 1966.

    Google Scholar

Figures(10)

Article Metrics

Article views(2352) PDF downloads(726) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint