2019 Volume 9 Issue 4
Article Contents

Xun Cao, Weihua Jiang. INTERACTIONS OF TURING AND HOPF BIFURCATIONS IN AN ADDITIONAL FOOD PROVIDED DIFFUSIVE PREDATOR-PREY MODEL[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1277-1304. doi: 10.11948/2156-907X.20180224
Citation: Xun Cao, Weihua Jiang. INTERACTIONS OF TURING AND HOPF BIFURCATIONS IN AN ADDITIONAL FOOD PROVIDED DIFFUSIVE PREDATOR-PREY MODEL[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1277-1304. doi: 10.11948/2156-907X.20180224

INTERACTIONS OF TURING AND HOPF BIFURCATIONS IN AN ADDITIONAL FOOD PROVIDED DIFFUSIVE PREDATOR-PREY MODEL

  • Corresponding author: Email address:jiangwh@hit.edu.cn(W. Jiang)
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (No.11871176)
  • Complex spatiotemporal dynamics of a diffusive predator-prey system involving additional food supply to predator and intra-specific competition among predator, are investigated. We establish critical conditions of the occurrence of Turing instability, which are necessary and sufficient. Furthermore, we also establish conditions of the occurrence of codimension-2 Turing-Hopf bifurcation and Turing-Turing bifurcation, by exploring interactions of Turing bifurcations and Hopf bifurcation. For Turing-Hopf bifurcation, by analyzing normal form truncated to order 3 which are derived by applying normal form method, it is shown that under proper conditions, diffusive predator-prey system generates interesting spatial, temporal and spatiotemporal patterns, including a pair of spatially inhomogeneous steady states, a spatially homogeneous periodic solution and a pair of spatially inhomogeneous periodic solutions. And numerical simulations are also shown to support theory analysis. Moreover, it is found that proper intra-specific competition among predator helps generate complex spatiotemporal dynamics. And, proper additional food supply to predator helps control the population fluctuations of predator and prey, while large quantity and high quality of additional food supply will lead to the extinction of prey and make predator change the source of food, which finally destroy the ecosystem. These investigations might help understand complex spatiotemporal dynamics of predator-prey system involving additional food supply to predator and intra-specific competition among predator, and help conserve species in an ecosystem via supplying suitable additional food.
    MSC: 35B10, 35B32, 35B35, 35B36, 35K57
  • 加载中
  • [1] M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 2007, 245(2), 220-229. doi: 10.1016/j.jtbi.2006.09.036

    CrossRef Google Scholar

    [2] A. D. Bazykin, A. I. Khibnik and B. Krauskopf, Nonlinear Dynamics of Interacting Populations, World Scientific, 1998.

    Google Scholar

    [3] B. I. Camara, M. Hague and H. Mokrani, Patterns formations in a diffusive ratio-dependent predator-prey model of interacting populations, Phys. A, 2016, 461, 374-383. doi: 10.1016/j.physa.2016.05.054

    CrossRef Google Scholar

    [4] S. Chakraborty, P. K. Tiwari, S. K. Sasmal et al., Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system, Appl. Math. Model., 2017, 47, 128-140. doi: 10.1016/j.apm.2017.03.028

    CrossRef Google Scholar

    [5] S. Chen, J. Shi and J. Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 2013, 93(6), 1115-1134.

    Google Scholar

    [6] H. Ddumba, J. Y. T. Mugisha, J. W. Gonsalves and G. I. H. Kerley, Periodicity and limit cycle perturbation analysis of a predator-prey model with interspecific species' interference, predator additional food and dispersal, Appl. Math. Comput., 2013, 219(15), 8338-8357.

    Google Scholar

    [7] A. Diouf, H. Mokrani, D. Ngom et al., Detection and computation of high codimension bifurcations in diffuse predator-prey systems, Phys. A, 2019, 516, 402-411. doi: 10.1016/j.physa.2018.10.027

    CrossRef Google Scholar

    [8] T. Faria, Normal forms and hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 2000, 352(5), 2217-2238. doi: 10.1090/S0002-9947-00-02280-7

    CrossRef Google Scholar

    [9] T. Faria, W. Huang and J. Wu, Smoothness of center manifolds for maps and formal adjoints for semilinear fdes in general Banach spaces, SIAM J. Appl. Math., 2002, 34(1), 173-203. doi: 10.1137/S0036141001384971

    CrossRef Google Scholar

    [10] S. Gakkhar and A. Singh, Control of chaos due to additional predator in the hastings-powell food chain model, J. Math. Anal. Appl., 2012, 385(1), 423-438. doi: 10.1016/j.jmaa.2011.06.047

    CrossRef Google Scholar

    [11] S. Ghorai and S. Poria, Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey-predator system supplying additional food, Chaos Solitons Fractals, 2016, 85, 57-67. doi: 10.1016/j.chaos.2016.01.013

    CrossRef Google Scholar

    [12] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.

    Google Scholar

    [13] L. N. Guin and P. K. Mandal, Spatiotemporal dynamics of reaction-diffusion models of interacting populations, Appl. Math. Model., 2014, 38(17-18), 4417-4427. doi: 10.1016/j.apm.2014.02.022

    CrossRef Google Scholar

    [14] S. Guo and J. Man, Center manifolds theorem for parameterized delay differential equations with applications to zero singularities, Nonlinear Anal., 2011, 74(13), 4418-4432. doi: 10.1016/j.na.2011.04.003

    CrossRef Google Scholar

    [15] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977.

    Google Scholar

    [16] M. Haque, A detailed study of the Beddington-Deangelis predator-prey model, Math. Biosci., 2011, 234(1), 1-16.

    Google Scholar

    [17] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 1965, 97(45), 1-60.

    Google Scholar

    [18] W. Jiang, Q. An and J. Shi, Formulation of the normal forms of Turing-Hopf bifurcation in reaction-diffusion systems with time delay, submitted, 2018, arXiv: 1802.10286.

    Google Scholar

    [19] W. Jiang and Y. Yuan, Bogdanov-Takens singularity in van der pol's oscillator with delayed feedback, Phys. D, 2007, 227(2), 149-161. doi: 10.1016/j.physd.2007.01.003

    CrossRef Google Scholar

    [20] D. Kumar and S. P. Chakrabarty, A comparative study of bioeconomic ratio-dependent predator-prey model with and without additional food to predators, Nonlinear Dynam., 2015, 80(1-2), 23-38. doi: 10.1007/s11071-014-1848-5

    CrossRef Google Scholar

    [21] X. Li, W. Jiang and J. Shi, Hopf bifurcation and turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 2011, 78(2), 287-306.

    Google Scholar

    [22] S. Ma and Z. Feng, Fold-hopf bifurcations of the Rose-Hindmarsh model with time delay, Int. J. Bifurc. Chaos, 2011, 21(2), 437-452. doi: 10.1142/S0218127411028490

    CrossRef Google Scholar

    [23] P. J. Pal, P. K. Mandal and K. K. Lahiri, A delayed ratio-dependent predator-prey model of interacting populations with Holling type iii functional response, Nonlinear Dynam., 2014, 76(1), 201-220. doi: 10.1007/s11071-013-1121-3

    CrossRef Google Scholar

    [24] B. Sahoo and S. Poria, Effects of additional food on an ecoepidemic model with time delay on infection, Appl. Math. Comput., 2014, 245, 17-35.

    Google Scholar

    [25] B. Sahoo and S. Poria, Effects of additional food in a delayed predator-prey model, Math. Biosci., 2015, 261, 62-73. doi: 10.1016/j.mbs.2014.12.002

    CrossRef Google Scholar

    [26] S. Samanta, R. Dhar, I. M. Elmojtaba and J. Chattopadhyay, The role of additional food in a predator-prey model with a prey refuge, J. Biol. Systems, 2016, 24(2-3), 345-365.

    Google Scholar

    [27] S. Sarwardi, M. Haque and P. K. Mandal, Persistence and global stability of bazykin predator-prey model with Beddington-Deangelis response function, Commun. Nonlinear Sci. Numer. Simul., 2014, 19(1), 189-209. doi: 10.1016/j.cnsns.2013.05.029

    CrossRef Google Scholar

    [28] S. K. Sasmal, Y. Kang and J. Chattopadhyay, Intra-specific competition in predator can promote the coexistence of an eco-epidemiological model with strong allee effects in prey, Biosystems, 2015, 137, 34-44. doi: 10.1016/j.biosystems.2015.09.003

    CrossRef Google Scholar

    [29] M. Sen, P. D. N. Srinivasu and M. Banerjee, Global dynamics of an additional food provided predator-prey system with constant harvest in predators, Appl. Math. Comput., 2015, 250, 193-211.

    Google Scholar

    [30] Y. Song, T. Zhang and Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 2016, 33, 229-258. doi: 10.1016/j.cnsns.2015.10.002

    CrossRef Google Scholar

    [31] Y. Song and X. Zou, Bifurcation analysis of a diffusive ratio-dependent predator-prey model, Nonlinear Dynam., 2014, 78(1), 49-70. doi: 10.1007/s11071-014-1421-2

    CrossRef Google Scholar

    [32] P. D. N. Srinivasu and B. S. R. V. Prasad, Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation, J. Math. Biol., 2010, 60(4), 591-613. doi: 10.1007/s00285-009-0279-2

    CrossRef Google Scholar

    [33] Y. Su and X. Zou, Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 2014, 27(1), 87-104. doi: 10.1088/0951-7715/27/1/87

    CrossRef Google Scholar

    [34] C. Wang, R. Liu, J. Shi and C. M. Del Rio, Spatiotemporal mutualistic model of mistletoes and birds, J. Math. Biol., 2014, 68(6), 1479-1520. doi: 10.1007/s00285-013-0664-8

    CrossRef Google Scholar

    [35] J. Wang and W. Jiang, Hopf-zero bifurcation of a delayed predator-prey model with dormancy of predators, J. Appl. Anal. Comput., 2017, 7(3), 1051-1069.

    Google Scholar

    [36] J. Wang, J. Wei and J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differential Equations, 2016, 260(4), 3495-3523. doi: 10.1016/j.jde.2015.10.036

    CrossRef Google Scholar

    [37] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Science & Business Media, 2003.

    Google Scholar

    [38] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, 1996.

    Google Scholar

    [39] X. Xu and J. Wei, Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23(2), 765-783.

    Google Scholar

    [40] L. Yang, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein, Spatial resonances and superposition patterns in a reaction-diffusion model with interacting turing modes, Phys. Rev. Lett., 2002, 88(20).

    Google Scholar

    [41] R. Yang and Y. Song, Spatial resonance and turing-hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal. Real World Appl., 2016, 31, 356-387. doi: 10.1016/j.nonrwa.2016.02.006

    CrossRef Google Scholar

    [42] R. Z. Yang, M. Liu and C. R. Zhang, A delayed-diffusive predator-prey model with a ratio-dependent functional response, Commun. Nonlinear Sci. Numer. Simul., 2017, 53, 94-110. doi: 10.1016/j.cnsns.2017.04.034

    CrossRef Google Scholar

    [43] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 2009, 246(5), 1944-1977. doi: 10.1016/j.jde.2008.10.024

    CrossRef Google Scholar

    [44] R. Yuan, W. Jiang and Y. Wang, Saddle-node-hopf bifurcation in a modified leslie-gower predator-prey model with time-delay and prey harvesting, J. Math. Anal. Appl., 2015, 422(2), 1072-1090. doi: 10.1016/j.jmaa.2014.09.037

    CrossRef Google Scholar

    [45] T. Zhang, X. Liu, X. Meng and T. Zhang, Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 2018, 75(12), 4490-4504. doi: 10.1016/j.camwa.2018.03.044

    CrossRef Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(3136) PDF downloads(935) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint