[1]
|
M. Bohner, S. R. Grace and N. Sultana, Asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations, Opuscula Math., 2014, 34, 5-14. doi: 10.7494/OpMath.2014.34.1.5
CrossRef Google Scholar
|
[2]
|
E. Brestovanská and M. Medve$\mathop {\text{d}}\limits^ \vee $, Asymptotic behavior of solutions to second-order differential equations with fractional derivative perturbations, Electronic J. Differ. Equ., 2014, 2014(201), 1-10.
Google Scholar
|
[3]
|
D. Bǎleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer, 2012.
Google Scholar
|
[4]
|
M. Caputo, Linear models of dissipation whose Q is almost frequency independent Ⅱ, Geophys. J. Royal Astronom. Soc., 1967, 13, 529-535. doi: 10.1111/j.1365-246X.1967.tb02303.x
CrossRef Google Scholar
|
[5]
|
K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
Google Scholar
|
[6]
|
K. M. Furati and N. E. Tatar, Power-type estimates for a nonlinear fractional differential equations, Nonlinear Anal., 2005, 62, 1025-1036. doi: 10.1016/j.na.2005.04.010
CrossRef Google Scholar
|
[7]
|
S. R. Grace and A. Zafer, Oscillatory behavior of integro-dynamic and integral equations on time scales, Appl. Math. Lett., 2014, 28, 47-52. doi: 10.1016/j.aml.2013.09.008
CrossRef Google Scholar
|
[8]
|
S. R. Grace, J. R. Graef and A. Zafer, Oscillation of integro-dynamic equations on time scales, Appl. Math. Lett., 2013, 26, 383-386. doi: 10.1016/j.aml.2012.10.001
CrossRef Google Scholar
|
[9]
|
S. R. Grace, J. R. Graef, S. Panigrahi and E. Tunç, On the oscillatory behavior of Volterra integral equations on time-scales, Panamer. Math. J., 2013, 23, 35-41.
Google Scholar
|
[10]
|
S. R. Grace, R. P. Agarwal, P. J. Y. Wong and A. Zafer, On the oscillation of fractional differential equations, Fract. Calc. Appl. Anal., 2012, 15, 222-231.
Google Scholar
|
[11]
|
G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.
Google Scholar
|
[12]
|
A. A. Kilbas, H. M. Srivastava and J. T. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.
Google Scholar
|
[13]
|
V. Lakshmikantham, S. Leela and J. Vaaundhara Devi, Theory of Fractional Dynamic Systems, Cambridge, 2009.
Google Scholar
|
[14]
|
M. Medve$\mathop {\text{d}}\limits^ \vee $, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 1997, 214, 349-366. doi: 10.1006/jmaa.1997.5532
CrossRef Google Scholar
|
[15]
|
M. Medve$\mathop {\text{d}}\limits^ \vee $, Integral inequalities and global solutions of semilinear evolution equations, J. Math. Anal. Appl., 2002, 37, 871-882.
Google Scholar
|
[16]
|
M. Medve$\mathop {\text{d}}\limits^ \vee $, Asymptotic integration of some classes of fractional differential equations, Tatra Mt. Math. Publ., 2013, 54, 119-132.
Google Scholar
|
[17]
|
M. Medve$\mathop {\text{d}}\limits^ \vee $ and M. Pospíšil, Asymptotic integration of fractional differential equations with integrodifferential right-hand side, Math. Modelling Analy., 2015, 20, 471-489. doi: 10.3846/13926292.2015.1068233
CrossRef Google Scholar
|
[18]
|
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
Google Scholar
|
[19]
|
Q. H. Ma, J. Pecaric and J. M. Zhang, Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems, Comput. Math. Appl., 2011, 61, 3258-3267. doi: 10.1016/j.camwa.2011.04.008
CrossRef Google Scholar
|
[20]
|
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, 1999.
Google Scholar
|
[21]
|
A. P. Prudnikov, Zu. A. Brychkov and O. I. Marichev, Integral and Series. Elementary Functions, Vol. 1, (in Russian), Nauka, Moscow, 1981.
Google Scholar
|
[22]
|
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993.
Google Scholar
|