2019 Volume 9 Issue 4
Article Contents

Said R. Grace, John R. Graef, Ercan Tunç. ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF CERTAIN INTEGRO-DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1305-1318. doi: 10.11948/2156-907X.20180226
Citation: Said R. Grace, John R. Graef, Ercan Tunç. ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF CERTAIN INTEGRO-DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1305-1318. doi: 10.11948/2156-907X.20180226

ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF CERTAIN INTEGRO-DIFFERENTIAL EQUATIONS

  • Corresponding author: Email address:John-Graef@utc.edu (J. R. Graef) 
  • Fund Project: The research of J. R. Graef was supported in part by a University of Tennessee at Chattanooga SimCenter - Center of Excellence in Applied Computational Science and Engineering (CEACSE) grant
  • The authors present conditions under which every positive solution $x(t)$ of the integro-differential equation $x^{\prime \prime }(t)=a(t)+\int_{c}^{t}(t-s)^{\alpha-1}[e(s)+k(t, s)f(s, x(s))]ds, \quad c>1, \ \alpha >0, $ satisfies $ x(t)=O(tA(t))\textrm{ as }t\rightarrow \infty, $ i.e, $\limsup_{t\rightarrow \infty }\frac{x(t)}{tA(t)} < \infty, \textrm{where} \ A(t)=\int_{c}^{t}a(s)ds.$ From the results obtained, they derive a technique that can be applied to some related integro-differential equations that are equivalent to certain fractional differential equations of Caputo type of any order.
    MSC: 34E10, 34A34
  • 加载中
  • [1] M. Bohner, S. R. Grace and N. Sultana, Asymptotic behavior of nonoscillatory solutions of higher-order integro-dynamic equations, Opuscula Math., 2014, 34, 5-14. doi: 10.7494/OpMath.2014.34.1.5

    CrossRef Google Scholar

    [2] E. Brestovanská and M. Medve$\mathop {\text{d}}\limits^ \vee $, Asymptotic behavior of solutions to second-order differential equations with fractional derivative perturbations, Electronic J. Differ. Equ., 2014, 2014(201), 1-10.

    Google Scholar

    [3] D. Bǎleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer, 2012.

    Google Scholar

    [4] M. Caputo, Linear models of dissipation whose Q is almost frequency independent Ⅱ, Geophys. J. Royal Astronom. Soc., 1967, 13, 529-535. doi: 10.1111/j.1365-246X.1967.tb02303.x

    CrossRef Google Scholar

    [5] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.

    Google Scholar

    [6] K. M. Furati and N. E. Tatar, Power-type estimates for a nonlinear fractional differential equations, Nonlinear Anal., 2005, 62, 1025-1036. doi: 10.1016/j.na.2005.04.010

    CrossRef Google Scholar

    [7] S. R. Grace and A. Zafer, Oscillatory behavior of integro-dynamic and integral equations on time scales, Appl. Math. Lett., 2014, 28, 47-52. doi: 10.1016/j.aml.2013.09.008

    CrossRef Google Scholar

    [8] S. R. Grace, J. R. Graef and A. Zafer, Oscillation of integro-dynamic equations on time scales, Appl. Math. Lett., 2013, 26, 383-386. doi: 10.1016/j.aml.2012.10.001

    CrossRef Google Scholar

    [9] S. R. Grace, J. R. Graef, S. Panigrahi and E. Tunç, On the oscillatory behavior of Volterra integral equations on time-scales, Panamer. Math. J., 2013, 23, 35-41.

    Google Scholar

    [10] S. R. Grace, R. P. Agarwal, P. J. Y. Wong and A. Zafer, On the oscillation of fractional differential equations, Fract. Calc. Appl. Anal., 2012, 15, 222-231.

    Google Scholar

    [11] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.

    Google Scholar

    [12] A. A. Kilbas, H. M. Srivastava and J. T. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.

    Google Scholar

    [13] V. Lakshmikantham, S. Leela and J. Vaaundhara Devi, Theory of Fractional Dynamic Systems, Cambridge, 2009.

    Google Scholar

    [14] M. Medve$\mathop {\text{d}}\limits^ \vee $, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 1997, 214, 349-366. doi: 10.1006/jmaa.1997.5532

    CrossRef Google Scholar

    [15] M. Medve$\mathop {\text{d}}\limits^ \vee $, Integral inequalities and global solutions of semilinear evolution equations, J. Math. Anal. Appl., 2002, 37, 871-882.

    Google Scholar

    [16] M. Medve$\mathop {\text{d}}\limits^ \vee $, Asymptotic integration of some classes of fractional differential equations, Tatra Mt. Math. Publ., 2013, 54, 119-132.

    Google Scholar

    [17] M. Medve$\mathop {\text{d}}\limits^ \vee $ and M. Pospíšil, Asymptotic integration of fractional differential equations with integrodifferential right-hand side, Math. Modelling Analy., 2015, 20, 471-489. doi: 10.3846/13926292.2015.1068233

    CrossRef Google Scholar

    [18] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

    Google Scholar

    [19] Q. H. Ma, J. Pecaric and J. M. Zhang, Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems, Comput. Math. Appl., 2011, 61, 3258-3267. doi: 10.1016/j.camwa.2011.04.008

    CrossRef Google Scholar

    [20] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, 1999.

    Google Scholar

    [21] A. P. Prudnikov, Zu. A. Brychkov and O. I. Marichev, Integral and Series. Elementary Functions, Vol. 1, (in Russian), Nauka, Moscow, 1981.

    Google Scholar

    [22] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, New York, 1993.

    Google Scholar

Article Metrics

Article views(1759) PDF downloads(741) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint