Citation: | Wen-Xiu Ma. A SEARCH FOR LUMP SOLUTIONS TO A COMBINED FOURTH-ORDER NONLINEAR PDE IN (2+1)-DIMENSIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1319-1332. doi: 10.11948/2156-907X.20180227 |
[1] | M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. |
[2] | P. J. Caudrey, Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s, Phil. Trans. R. Soc. A, 2011, 369(1939), 1215-1227. doi: 10.1098/rsta.2010.0337 |
[3] | S. T. Chen and W. X. Ma, Lumps solutions to a generalized Calogero-Bogoyavlenskii-Schiff equation, Comput. Math. Appl., 2018, 76(7), 1680-1685. doi: 10.1016/j.camwa.2018.07.019 |
[4] | S. T. Chen and W. X. Ma, Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation, Front. Math. China, 2018, 13(3), 525-534. doi: 10.1007/s11464-018-0694-z |
[5] | H. H. Dong, Y. Zhang and X. E. Zhang, The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation, Commun. Nonlinear Sci. Numer. Simulat., 2016, 36, 354-365. doi: 10.1016/j.cnsns.2015.12.015 |
[6] | B. Dorizzi, B. Grammaticos, A. Ramani and P. Winternitz, Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J. Math. Phys., 1986, 27(12), 2848-2852. doi: 10.1063/1.527260 |
[7] | L. N. Gao, Y. Y. Zi, Y. H. Yin, W. X. Ma and X. Lü, Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dynam., 2017, 89(3), 2233-2240. doi: 10.1007/s11071-017-3581-3 |
[8] | C. R. Gilson and J. J. C. Nimmo, Lump solutions of the BKP equation, Phys. Lett. A, 1990, 147(8-9), 472-476. doi: 10.1016/0375-9601(90)90609-R |
[9] | Harun-Or-Roshid and M. Z. Ali, Lump solutions to a Jimbo-Miwa like equation, 2016, arXiv: 1611.04478. |
[10] | J. Hietarinta, Introduction to the Hirota bilinear method, in: Integrability of Nonlinear Systems, Y. Kosmann-Schwarzbach, B. Grammaticos and K. M. Tamizhmani (Eds.), pp. 95-103, Springer, Berlin, Heidelberg, 1997. |
[11] | R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, New York, 2004. |
[12] | N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311-328. doi: 10.1016/j.jmaa.2006.10.078 |
[13] | K. Imai, Dromion and lump solutions of the Ishimori-Ⅰ equation, Prog. Theor. Phys., 1997, 98(5), 1013-1023. doi: 10.1143/PTP.98.1013 |
[14] | D. J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22(6), 1176-1181. doi: 10.1063/1.525042 |
[15] | T. C. Kofane, M. Fokou, A. Mohamadou and E. Yomba, Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation, Eur. Phys. J. Plus, 2017, 132, 465. doi: 10.1140/epjp/i2017-11747-6 |
[16] | B. Konopelchenko and W. Strampp, The AKNS hierarchy as symmetry constraint of the KP hierarchy, Inverse Probl., 1991, 7(2), L17-L24. doi: 10.1088/0266-5611/7/2/002 |
[17] | X. Y. Li and Q. L. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 2017, 121, 123-137. doi: 10.1016/j.geomphys.2017.07.010 |
[18] | X. Y. Li, Q. L. Zhao, Y. X. Li and H. H. Dong, Binary Bargmann symmetry constraint associated with 3× discrete matrix spectral problem, J. Nonlinear Sci. Appl., 2015, 8, 496-506. doi: 10.22436/jnsa |
[19] | J. G. Liu, L. Zhou and Y. He, Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method, Appl. Math. Lett., 2018, 80, 71-78. doi: 10.1016/j.aml.2018.01.010 |
[20] | X. Lü, S. T. Chen and W. X. Ma, Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dynam., 2016, 86(1), 523-534. doi: 10.1007/s11071-016-2905-z |
[21] | X. Lü, W. X. Ma, S. T. Chen and C. M. Khalique, A note on rational solutions to a Hirota-Satsuma-like equation, Appl. Math. Lett., 2016, 58, 13-18. doi: 10.1016/j.aml.2015.12.019 |
[22] | X. Lü, W. X. Ma, Y. Zhou and C. M. Khalique, Rational solutions to an extended Kadomtsev-Petviashvili like equation with symbolic computation, Comput. Math. Appl., 2016, 71(8), 1560-1567. doi: 10.1016/j.camwa.2016.02.017 |
[23] | W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 2015, 379(36), 1975-1978. doi: 10.1016/j.physleta.2015.06.061 |
[24] | W. X. Ma, Conservation laws of discrete evolution equations by symmetries and adjoint symmetries, Symmetry, 2015, 7(2), 714-725. doi: 10.3390/sym7020714 |
[25] | W. X. Ma, Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation, Int. J. Nonlinear Sci. Numer. Simulat., 2016, 17, 355-359. |
[26] | W. X. Ma, Conservation laws by symmetries and adjoint symmetries, Discrete Contin. Dyn. Syst. Series S, 2018, 11(4), 707-721. |
[27] |
W. X. Ma, Riemann-Hilbert problems and $N$-soliton solutions for a coupled mKdV system, J. Geom. Phys., 2018, 132, 45-54. doi: 10.1016/j.geomphys.2018.05.024
CrossRef $N$-soliton solutions for a coupled mKdV system" target="_blank">Google Scholar |
[28] | W. X. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys., 2018, 133, 10-16. doi: 10.1016/j.geomphys.2018.07.003 |
[29] | W. X. Ma, Lump and interaction solutions of linear PDEs in (3+1)-dimensions, East Asian J. Appl. Math., 2019, 9(1), 185-194. doi: 10.4208/eajam.100218.300318 |
[30] | W. X. Ma and E. G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 2011, 61(4), 950-959. doi: 10.1016/j.camwa.2010.12.043 |
[31] | W. X. Ma, J. Li and C. M. Khalique, A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-dimensions, Complexity, 2018, 2018, Article ID 9059858, 7 pp. |
[32] | W. X. Ma, Z. Y. Qin and X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dynam., 2016, 84(2), 923-931. doi: 10.1007/s11071-015-2539-6 |
[33] | W. X. Ma and W. Strampp, An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A, 1994, 185(3), 277-286. doi: 10.1016/0375-9601(94)90616-5 |
[34] | W. X. Ma, X. L. Yong and H. Q. Zhang, Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 2018, 75(1), 289-295. doi: 10.1016/j.camwa.2017.09.013 |
[35] | W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Diff. Eqns., 2018, 264(4), 2633-2659. doi: 10.1016/j.jde.2017.10.033 |
[36] | W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B, 2016, 30(28n29), 1640018. doi: 10.1142/S021797921640018X |
[37] | S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 1977, 63(3), 205-206. doi: 10.1016/0375-9601(77)90875-1 |
[38] | S. Manukure, Y. Zhou and W. X. Ma, Lump solutions to a (2+1)-dimensional extended KP equation, Comput. Math. Appl., 2018, 75(7), 2414-2419. doi: 10.1016/j.camwa.2017.12.030 |
[39] | S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons - The Inverse Scattering Method, Consultants Bureau, New York, 1984. |
[40] | J. Satsuma and M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 1979, 20(7), 1496-1503. doi: 10.1063/1.524208 |
[41] | Y. Sun, B. Tian, X. Y. Xie, J. Chai and H. M. Yin, Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics, Wave Random Complex, 2018, 28(3), 544-552. doi: 10.1080/17455030.2017.1367866 |
[42] | W. Tan, H. P. Dai, Z. D. Dai and W. Y. Zhong, Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation, Pramana - J. Phys., 2017, 89, 77. doi: 10.1007/s12043-017-1474-0 |
[43] | Y. N. Tang, S. Q. Tao and G. Qing, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Comput. Math. Appl., 2016, 72(9), 2334-2342. doi: 10.1016/j.camwa.2016.08.027 |
[44] | Ö. Ünsal and W. X. Ma, Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations, Comput. Math. Appl., 2016, 71(6), 1242-1247. doi: 10.1016/j.camwa.2016.02.006 |
[45] | H. Wang, Lump and interaction solutions to the (2+1)-dimensional Burgers equation, Appl. Math. Lett., 2018, 85, 27-34. doi: 10.1016/j.aml.2018.05.010 |
[46] | D. S. Wang and Y. B. Yin, Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach, Comput. Math. Appl., 2016, 71(3), 748-757. doi: 10.1016/j.camwa.2015.12.035 |
[47] | J. P. Wu and X. G. Geng, Novel Wronskian condition and new exact solutions to a (3+1)-dimensional generalized KP equation, Commun. Theoret. Phys., 2013, 60(5), 556-510. doi: 10.1088/0253-6102/60/5/08 |
[48] | X. X. Xu, A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation, Appl. Math. Comput., 2015, 251, 275-283. |
[49] | Z. H. Xu, H. L. Chen and Z. D. Dai, Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Lett., 2014, 37, 34-38. doi: 10.1016/j.aml.2014.05.005 |
[50] | X. X. Xu and M. Xu, A family of integrable different-difference equations, its Hamiltonian structure, and Darboux-Bäcklund transformation, Discrete Dyn. Nat. Soc., 2018, 2018 Art. ID 4152917, 11 pp. |
[51] | J. Y. Yang and W. X. Ma, Lump solutions of the BKP equation by symbolic computation, Int. J. Mod. Phys. B, 2016, 30(28n29), 1640028. doi: 10.1142/S0217979216400282 |
[52] | J. Y. Yang and W. X. Ma, Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensions, Comput. Math. Appl., 2017, 73(2), 220-225. doi: 10.1016/j.camwa.2016.11.007 |
[53] | J. Y. Yang and W. X. Ma, Abundant interaction solutions of the KP equation, Nonlinear Dynam., 2017, 89(2), 1539-1544. doi: 10.1007/s11071-017-3533-y |
[54] | J. Y. Yang, W. X. Ma and Z. Y. Qin, Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys., 2018, 8(3), 427-436. doi: 10.1007/s13324-017-0181-9 |
[55] | J. Y. Yang, W. X. Ma and Z. Y. Qin, Abundant mixed lump-soliton solutions to the BKP equation, East Asian J. Appl. Math., 2018, 8(2), 224-232. doi: 10.4208/eajam.210917.051217a |
[56] | Y. H. Yin, W. X. Ma, J. G. Liu and X. Lü, Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76(6), 1225-1283. |
[57] | X. L. Yong, W. X. Ma, Y. H. Huang and Y. Liu, Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source, Comput. Math. Appl., 2018, 75(9), 3414-3419. doi: 10.1016/j.camwa.2018.02.007 |
[58] | J. P. Yu and Y. L. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dynam., 2017, 87(4), 2755-2763. doi: 10.1007/s11071-016-3225-z |
[59] | H. C. Zheng, W. X. Ma and X. Gu, Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions, Appl. Math. Comput., 2013, 220, 226-234. |
[60] | X. E. Zhang, Y. Chen and Y. Zhang, Breather, lump and soliton solutions to nonlocal KP equation, Comput. Math. Appl., 2017, 74(10), 2341-2347. doi: 10.1016/j.camwa.2017.07.004 |
[61] | Y. Zhang, H. H. Dong, X. E. Zhang and H. W. Yang, Rational solutions and lump solutions to the generalized (3 + 1)-dimensional shallow water-like equation, Comput. Math. Appl., 2017, 73(2), 246-252. doi: 10.1016/j.camwa.2016.11.009 |
[62] |
Y. Zhang, Y. P. Liu and X. Y. Tang, $M$-lump solutions to a (3+1)-dimensional nonlinear evolution equation, Comput. Math. Appl., 2018, 76(3), 592-601. doi: 10.1016/j.camwa.2018.04.039
CrossRef $M$-lump solutions to a (3+1)-dimensional nonlinear evolution equation" target="_blank">Google Scholar |
[63] | Y. Zhang, S. L. Sun and H. H. Dong, Hybrid solutions of (3+1)-dimensional Jimbo-Miwa equation, Math. Probl. Eng., 2017, 2017, Article ID 5453941, 15 pp. |
[64] | H. Q. Zhang and W. X. Ma, Lump solutions to the (2+1)-dimensional Sawada-Kotera equation, Nonlinear Dynam., 2017, 87(4), 2305-2310. doi: 10.1007/s11071-016-3190-6 |
[65] | J. B. Zhang and W. X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 2017, 74(3), 591-596. doi: 10.1016/j.camwa.2017.05.010 |
[66] | Q. L. Zhao and X. Y. Li, A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy, Anal. Math. Phys., 2016, 6(3), 237-254. doi: 10.1007/s13324-015-0116-2 |
[67] | H. Q. Zhao and W. X. Ma, Mixed lump-kink solutions to the KP equation, Comput. Math. Appl., 2017, 74(6), 1399-1405. doi: 10.1016/j.camwa.2017.06.034 |
[68] | Y. Zhou and W. X. Ma, Applications of linear superposition principle to resonant solitons and complexitons, Comput. Math. Appl., 2017, 73(8), 1697-1706. doi: 10.1016/j.camwa.2017.02.015 |
[69] | Y. Zhou, S. Manukure and W. X. Ma, Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation, Commun. Nonlinear Sci. Numer. Simulat., 2019, 68, 56-62. doi: 10.1016/j.cnsns.2018.07.038 |