2019 Volume 9 Issue 4
Article Contents

Yunxian Dai, Ping Yang, Zhiliang Luo, Yiping Lin. BOGDANOV-TAKENS BIFURCATION IN A DELAYED MICHAELIS-MENTEN TYPE RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH PREY HARVESTING[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1333-1346. doi: 10.11948/2156-907X.20180238
Citation: Yunxian Dai, Ping Yang, Zhiliang Luo, Yiping Lin. BOGDANOV-TAKENS BIFURCATION IN A DELAYED MICHAELIS-MENTEN TYPE RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH PREY HARVESTING[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1333-1346. doi: 10.11948/2156-907X.20180238

BOGDANOV-TAKENS BIFURCATION IN A DELAYED MICHAELIS-MENTEN TYPE RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH PREY HARVESTING

  • Corresponding author: Email address:linyiping689@163.com(Y. Lin)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos.11761040, 11461036)
  • In this paper, we study a delayed Michaelis-Menten Type ratio-dependent predator-prey model with prey harvesting. By considering the characteristic equation associated with the nonhyperbolic equilibrium, the critical value of the parameters for the Bogdanov-Takens bifurcation is obtained. The conditions for the characteristic equation having negative real parts are discussed. Using the normal form theory of Bogdanov-Takens bifurcation for retarded functional differential equations, the corresponding normal form restricted to the associated two-dimensional center manifold is calculated and the versal unfolding is considered. The parameter conditions for saddle-node bifurcation, Hopf bifurcation and homoclinic bifurcation are obtained. Numerical simulations are given to support the analytical results.
    MSC: 34A34, 34D23, 34C25
  • 加载中
  • [1] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 1989, 139, 311-326. doi: 10.1016/S0022-5193(89)80211-5

    CrossRef Google Scholar

    [2] R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 1992, 73, 1544-1551. doi: 10.2307/1940007

    CrossRef Google Scholar

    [3] E. Beretta and Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal., 1998, 32, 381-408. doi: 10.1016/S0362-546X(97)00491-4

    CrossRef Google Scholar

    [4] F. Berezovskaya, G. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 2001, 43, 221-246. doi: 10.1007/s002850000078

    CrossRef Google Scholar

    [5] R. I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues, Proc. Petrovskii Seminar, 1981, 2, 37-65(in Russian) (translated in Selecta Math. Soviet. 1, 389-421).

    Google Scholar

    [6] S. N. Chow, C. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, 1994.

    Google Scholar

    [7] M. Coccolo, B. B. Zhu, M. A. F. Sanjuán and J. M. Sanz-Serna, Bogdanov-Takens resonance in time-delayed systems, Nonlinear Dynam., 2018, 91, 1939-1947. doi: 10.1007/s11071-017-3992-1

    CrossRef Google Scholar

    [8] T. Faria and L. T. Magalh$\tilde{a}$es, Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Diff. Eqs., 1995, 122, 201-224. doi: 10.1006/jdeq.1995.1145

    CrossRef Google Scholar

    [9] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, 1983.

    Google Scholar

    [10] S. Guo, W. H. Jiang and H. B. Wang, Global analysis in delayed ratio-dependent gause-type predator-prey models, J. Appl. Anal. Comp., 2017, 7, 1095-1111.

    Google Scholar

    [11] A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example, Ecology, 1992, 73, 1552-1563. doi: 10.2307/1940008

    CrossRef Google Scholar

    [12] J. Hale and L. S. Verduyn, Introduction to Functional Differential Equations, Springer, New York, 1993.

    Google Scholar

    [13] M. A. Han, J. Llibre and J. M. Yang, On uniqueness of limit cycles in general Bogdanov-Takens bifurcation, Int. J. Bifur. Chaos, 2018, 28, 1850115, 12 pp.

    Google Scholar

    [14] X. He, C. D. Li and Y. L. Shu, Bogdanov-Takens bifurcation in a single inertial neuron model with delay, Neurocomputing, 2012, 89, 193-201. doi: 10.1016/j.neucom.2012.02.019

    CrossRef Google Scholar

    [15] J. Jiang and Y. L. Song, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback. Appl. Math. Model., 2013, 37(16-17), 8091-8105. doi: 10.1016/j.apm.2013.03.034

    CrossRef Google Scholar

    [16] J. Jiang and Y. L. Song, Delay-induced Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with nonmonotonic functional response, Commun. Nonlinear Sci. Numer. Simulat., 2014, 19, 2454-2465. doi: 10.1016/j.cnsns.2013.11.020

    CrossRef Google Scholar

    [17] W. H. Jiang and Y. Yuan, Bogdanov-Takens singularity in Van der Pol's oscillator with delayed feedback, Physica D, 2007, 227, 149-161. doi: 10.1016/j.physd.2007.01.003

    CrossRef Google Scholar

    [18] C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 1999, 61, 19-32. doi: 10.1006/bulm.1998.0072

    CrossRef Google Scholar

    [19] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 1998, 36, 389-406. doi: 10.1007/s002850050105

    CrossRef Google Scholar

    [20] B. T. Li and Y. Kuang, Heteroclinic bifurcation in the michaelis-menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 2007, 67, 1453-1464. doi: 10.1137/060662460

    CrossRef Google Scholar

    [21] Z. H. Liu and R. Yuan, Bifurcations in predator-prey systems with nonmonotonic functional response, Nonlinear Anal.: Real World Appl., 2005, 6, 187-205. doi: 10.1016/j.nonrwa.2004.08.005

    CrossRef Google Scholar

    [22] Y. Song, Z. W. Li and Y. Du, Stability and Hopf bifurcation of a ratio-dependent predator-prey model with time delay and stage structure, Electron. J. Qual. Theory Differ., 2016, 99, 1-23.

    Google Scholar

    [23] Y. L. Song, T. Yin and H. Y. Shu, Dynamics of a ratio-dependent stage-structured predator-prey model with delay, Math. Meth. Appl. Sci., 2017, 40, 6451-6467. doi: 10.1002/mma.v40.18

    CrossRef Google Scholar

    [24] J. L. Wang, J. L. Liang and Y. R. Liu, Zero singularities of codimension two in a delayed predator-prey diffusion system, Neurocomputing, 2017, 227, 10-17. doi: 10.1016/j.neucom.2016.07.060

    CrossRef Google Scholar

    [25] J. N. Wang and W. H. Jiang, Bogdanov-Takens singularity in the comprehensive national power model with time delays, J. Appl. Anal. Comp., 2013, 3, 81-94.

    Google Scholar

    [26] R. Wang, H. Liu, F. Feng and F. Yan, Bogdanov-Takens bifurcation in a neutral BAM neural networks model with delays, IET Syst. Biol., 2017, 11, 163-173. doi: 10.1049/iet-syb.2017.0018

    CrossRef Google Scholar

    [27] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, 2003.

    Google Scholar

    [28] J. Xia, Z. H. Liu, R. Yuan and S. G. Ruan, The effects of harvesting and time delay on predator-prey systems with Holling type Ⅱ functional response, SIAM J. Appl. Math., 2009, 70(4), 1178-1200. doi: 10.1137/080728512

    CrossRef Google Scholar

    [29] D. M. Xiao and S. G. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math.Biol., 2001, 43, 268-290. doi: 10.1007/s002850100097

    CrossRef Google Scholar

    [30] D. M. Xiao and W. X. Li, Stability and bifurcation in a delayed ratio-dependent predator-prey system, Proc. Edinb. Math. Soc., 2002, 45, 205-220. doi: 10.1017/S0013091500000729

    CrossRef Google Scholar

    [31] D. M. Xiao and S. G. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 2001, 61(4), 1445-1472. doi: 10.1137/S0036139999361896

    CrossRef Google Scholar

    [32] Y. X. Xu and M. Y. Huang, Homoclinic orbits and Hopf bifurcations in delay differential systems with T-B singularity, J. Diff. Eqs., 2008, 244, 582-598. doi: 10.1016/j.jde.2007.09.003

    CrossRef Google Scholar

    [33] S. H. Zhang and R. Xu, Global stability of a delayed ratio-dependent predator-prey model with gompertz growth for prey, J. Appl. Anal. Comp., 2015, 5, 28-37.

    Google Scholar

Figures(4)

Article Metrics

Article views(2905) PDF downloads(854) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint