2019 Volume 9 Issue 4
Article Contents

Xiaofeng Ke, Chunlei Tang. EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A CLASS OF NONCOOPERATIVE ELLIPTIC SYSTEMS WITH SUPERLINEAR NONLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1347-1358. doi: 10.11948/2156-907X.20180240
Citation: Xiaofeng Ke, Chunlei Tang. EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A CLASS OF NONCOOPERATIVE ELLIPTIC SYSTEMS WITH SUPERLINEAR NONLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1347-1358. doi: 10.11948/2156-907X.20180240

EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO A CLASS OF NONCOOPERATIVE ELLIPTIC SYSTEMS WITH SUPERLINEAR NONLINEAR TERMS

  • Corresponding author: Email address: tangcl@swu.edu.cn (C. Tang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No.11226118, No.11471267), "Fundamental Research Funds for the Central Universities" (XDJK2018C073) and Doctoral Fund of Southwest University (SWU111060)
  • We study a class of noncooperative elliptic systems. By applying a new superlinear condition, it is shown that there exists a nontrivial weak solution. Moreover, infinitely many solutions are obtained.
    MSC: 35A15, 35G30, 35J57
  • 加载中
  • [1] S. Barile and A. Salvatore, Existence and multiplicity results for some Lane-Emden elliptic systems: subquadratic case, Adv. Nonlinear Anal., 2015, 4(1), 25-35.

    Google Scholar

    [2] S. Barile and A. Salvatore, Some results on weighted subquadratic Lane-Emden elliptic systems in unbounded domains, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2016, 27(1), 89-103. doi: 10.4171/RLM

    CrossRef Google Scholar

    [3] S. Barile and A. Salvatore, Some new results on subquadratic Lane-Emden elliptic systems, Mediterr. J. Math., 2017, 14(1), Art. 31, 18pp.

    Google Scholar

    [4] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 1983, 7(9), 981-1012. doi: 10.1016/0362-546X(83)90115-3

    CrossRef Google Scholar

    [5] Z. J. Chen and W. M. Zou, A note on the Ambrosetti-Rabinowitz condition for an elliptic system, Appl. Math. Lett., 2012, 25(11), 1931-1935. doi: 10.1016/j.aml.2012.03.003

    CrossRef Google Scholar

    [6] P. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 1992, 17, 923-940. doi: 10.1080/03605309208820869

    CrossRef Google Scholar

    [7] D. G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 1994, 343, 99-116. doi: 10.1090/tran/1994-343-01

    CrossRef Google Scholar

    [8] D. G. de Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 2004, 1, 417-431. doi: 10.1007/s00009-004-0021-7

    CrossRef Google Scholar

    [9] P. Felmer and S. Martínez, Existence and uniqueness of positive solutions to certain differential systems, Adv. Differential Equations, 1998, 3, 575-593.

    Google Scholar

    [10] J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 1993, 114, 32-58. doi: 10.1006/jfan.1993.1062

    CrossRef Google Scholar

    [11] S. Kichenassamy and L. Véron, Singular solutions of the p-Laplace equation, Math. Ann., 1986, 275(4), 599-615. doi: 10.1007/BF01459140

    CrossRef Google Scholar

    [12] A. Kristály, On a new class of elliptic systems with nonlinearities of arbitrary growth, J. Differential Equations, 2010, 249(8), 1917-1928. doi: 10.1016/j.jde.2010.05.001

    CrossRef Google Scholar

    [13] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 1990, 32, 537-578. doi: 10.1137/1032120

    CrossRef Google Scholar

    [14] P. J. McKenna and W. Walter, Traveling waves in a suspension bridge, SIAM J. Appl. Math., 1990, 50, 703-715. doi: 10.1137/0150041

    CrossRef Google Scholar

    [15] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations, 1993, 18, 125-151. doi: 10.1080/03605309308820923

    CrossRef Google Scholar

    [16] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Application to Differential Equation, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.

    Google Scholar

    [17] B. Ruf, Lorentz spaces and nonlinear elliptic systems. Contributions to nonlinear analysis, 471-489, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006.

    Google Scholar

    [18] A. Salvatore, Multiple solutions for elliptic systems with nonlinearities of arbitrary growth, J. Differential Equations, 2008, 244, 2529-2544. doi: 10.1016/j.jde.2008.01.025

    CrossRef Google Scholar

    [19] A. Salvatore, Infinitely many solutions for symmetric and non-symmetric elliptic systems, J. Math. Anal. Appl., 2010, 366(2), 506-515. doi: 10.1016/j.jmaa.2010.01.037

    CrossRef Google Scholar

    [20] R. van der Vorst, Variational identities and applications to differential systems, Arch. Ration. Mech. Anal., 1991, 116, 375-398.

    Google Scholar

Article Metrics

Article views(2433) PDF downloads(622) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint