[1]
|
A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031
CrossRef Google Scholar
|
[2]
|
A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 2015, 281, 876-895. doi: 10.1016/j.jcp.2014.10.060
CrossRef Google Scholar
|
[3]
|
A. H. Bhrawy and M. A. Zaky, Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations, Nonlinear Dyn., 2017, 89, 1415-1432. doi: 10.1007/s11071-017-3525-y
CrossRef Google Scholar
|
[4]
|
W. Bu, A. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 2017, 72(3), 422-441.
Google Scholar
|
[5]
|
R. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, PA, 2007.
Google Scholar
|
[6]
|
R. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Stat. Comput., 1989, 10(1), 104-119. doi: 10.1137/0910009
CrossRef Google Scholar
|
[7]
|
A. Chechkin, R. Gorenflo and I. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 2002, 66(4), 046129. doi: 10.1103/PhysRevE.66.046129
CrossRef Google Scholar
|
[8]
|
L. K. Chou and S. L. Lei, Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy, Comput. Math. Appl., 2017, 73(3), 385-403. doi: 10.1016/j.camwa.2016.11.034
CrossRef Google Scholar
|
[9]
|
G. H. Gao, A. A. Alikhanov and Z. Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multiterm and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 2017, 73, 93-121. doi: 10.1007/s10915-017-0407-x
CrossRef Google Scholar
|
[10]
|
G. H. Gao, H. W. Sun and Z. Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys., 2015, 298, 337-359. doi: 10.1016/j.jcp.2015.05.047
CrossRef Google Scholar
|
[11]
|
G. H. Gao and Z. Z. Sun, Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations, Comput. Math. Appl., 2015, 69(9), 926-948. doi: 10.1016/j.camwa.2015.02.023
CrossRef Google Scholar
|
[12]
|
X. M. Gu, T. Z. Huang, B. Carpentieri et al., A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems, Comput. Math. Appl., 2015, 70(12), 3019-3031. doi: 10.1016/j.camwa.2015.10.012
CrossRef Google Scholar
|
[13]
|
X. M. Gu, T. Z. Huang, C. C. Ji et al., Fast iterative method with a second order implicit difference scheme for time-space fractional convection-diffusion equations, J. Sci. Comput., 2017, 72, 957-985. doi: 10.1007/s10915-017-0388-9
CrossRef Google Scholar
|
[14]
|
X. M. Gu, T. Z. Huang, H. B. Li et al., On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations, Appl. Math. Lett., 2015, 42, 53-58. doi: 10.1016/j.aml.2014.11.005
CrossRef Google Scholar
|
[15]
|
X. M. Gu, T. Z. Huang, X. L. Zhao et al., Strang-type preconditioners for solving fractional diffusion equations by boundary value methods, J. Comput. Appl. Math., 2015, 277, 73-86. doi: 10.1016/j.cam.2014.08.011
CrossRef Google Scholar
|
[16]
|
B. Henry, T. Langlands and S. Wearne, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reactiondiffusion equations, Phys. Rev. E, 2006, 74(3), 031116. doi: 10.1103/PhysRevE.74.031116
CrossRef Google Scholar
|
[17]
|
X. Hu, F. Liu, I. Turner and V. Anh, An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation, Numer. Algor., 2016, 72(2), 393-407. doi: 10.1007/s11075-015-0051-1
CrossRef Google Scholar
|
[18]
|
H. Jiang, F. Liu, I. Turner and K. Burrage, Analytical solutions for the multiterm time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 2012, 389(2), 1117-1127. doi: 10.1016/j.jmaa.2011.12.055
CrossRef Google Scholar
|
[19]
|
J. T. Katsikadelis, Numerical solution of distributed order fractional differential equations, J. Comput. Phys., 2014, 259, 11-22. doi: 10.1016/j.jcp.2013.11.013
CrossRef Google Scholar
|
[20]
|
A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 2008, 340(1), 252-281. doi: 10.1016/j.jmaa.2007.08.024
CrossRef Google Scholar
|
[21]
|
S. L. Lei, X. Chen and X. Zhang, Multilevel circulant preconditioner for highdimensional fractional diffusion equations, East Asian J. Appl. Math., 2016, 6(2), 109-130. doi: 10.4208/eajam.060815.180116a
CrossRef Google Scholar
|
[22]
|
S. L. Lei and H. W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 2013, 242, 715-725. doi: 10.1016/j.jcp.2013.02.025
CrossRef Google Scholar
|
[23]
|
C. Li and H. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 2014, 38(15), 3802-3821.
Google Scholar
|
[24]
|
H. Li, X. Wu, J. Zhang et al., Numerical solution of the time-fractional subdiffusion equation on an unbounded domain in two-dimensional space, East. Asia. J. Appl. Math., 2017, 7(3), 439-454. doi: 10.4208/eajam.031116.080317a
CrossRef Google Scholar
|
[25]
|
Z. Li, Y. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 2017, 73(6), 1041-1052. doi: 10.1016/j.camwa.2016.06.030
CrossRef Google Scholar
|
[26]
|
F. Liu, M. M. Meerschaert, R. J. McGough et al., Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 2013, 16(1), 9-25.
Google Scholar
|
[27]
|
F. Liu, C. Yang and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math., 2009, 231(1), 160-176. doi: 10.1016/j.cam.2009.02.013
CrossRef Google Scholar
|
[28]
|
Q. Liu, F. Liu, I. Turner and V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model., 2011, 35(8), 4103-4116. doi: 10.1016/j.apm.2011.02.036
CrossRef Google Scholar
|
[29]
|
R. L. Magin, O. Abdullah, D. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 2008, 190(2), 255-270. doi: 10.1016/j.jmr.2007.11.007
CrossRef Google Scholar
|
[30]
|
S. Mashayekhi and M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 2016, 315, 169-181. doi: 10.1016/j.jcp.2016.01.041
CrossRef Google Scholar
|
[31]
|
M. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 2011, 379(1), 216-228. doi: 10.1016/j.jmaa.2010.12.056
CrossRef Google Scholar
|
[32]
|
D. Rui, Z. P. Hao and Z. Z. Sun, Lubich second-order methods for distributedorder time-fractional differential equations with smooth solutions, East. Asia. J. Appl. Math., 2016, 6(2), 131-151. doi: 10.4208/eajam.020615.030216a
CrossRef Google Scholar
|
[33]
|
H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 1975, 12(6), 2455.
Google Scholar
|
[34]
|
W. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 1989, 30(1), 134-144. doi: 10.1063/1.528578
CrossRef Google Scholar
|
[35]
|
Z.-Z. Sun and G.-H. Gao, Finite Difference Methods for the Fractional Differential Equations, Science Press, Beijing, 2015. (in Chinese).
Google Scholar
|
[36]
|
K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 2011, 34(7), 810-816. doi: 10.1016/j.advwatres.2010.11.003
CrossRef Google Scholar
|
[37]
|
H. Ye, F. Liu, V. Anh and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math., 2015, 80(3), 825-838. doi: 10.1093/imamat/hxu015
CrossRef Google Scholar
|
[38]
|
M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn., 2018, 91, 2667-2681. doi: 10.1007/s11071-017-4038-4
CrossRef Google Scholar
|
[39]
|
M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comp. Appl. Math., 2018, 37, 3525-3538. doi: 10.1007/s40314-017-0530-1
CrossRef Google Scholar
|
[40]
|
M. A. Zaky, E. H. Doha and J. A. T. Machado, A spectral numerical method for solving distributed-order fractional initial value problems, J. Comput. Nonlinear Dynam., 2018, 13(10), 101007. doi: 10.1115/1.4041030
CrossRef Google Scholar
|
[41]
|
M. A. Zaky and J. A. T. Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simulat., 2017, 52, 177-189. doi: 10.1016/j.cnsns.2017.04.026
CrossRef Google Scholar
|
[42]
|
X. L. Zhao, T. Z. Huang, S. L. Wu and Y. F. Jing, DCT- and DST-based splitting methods for Toeplitz systems, Int. J. Comput. Math., 2012, 89(5), 691-700. doi: 10.1080/00207160.2011.649264
CrossRef Google Scholar
|