2019 Volume 9 Issue 4
Article Contents

Huanyan Jian, Tingzhu Huang, Xile Zhao, Yongliang Zhao. FAST SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR TIME DISTRIBUTED-ORDER AND RIESZ SPACE FRACTIONAL DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1359-1392. doi: 10.11948/2156-907X.20180247
Citation: Huanyan Jian, Tingzhu Huang, Xile Zhao, Yongliang Zhao. FAST SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR TIME DISTRIBUTED-ORDER AND RIESZ SPACE FRACTIONAL DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1359-1392. doi: 10.11948/2156-907X.20180247

FAST SECOND-ORDER ACCURATE DIFFERENCE SCHEMES FOR TIME DISTRIBUTED-ORDER AND RIESZ SPACE FRACTIONAL DIFFUSION EQUATIONS

  • The aim of this paper is to develop fast second-order accurate difference schemes for solving one- and two-dimensional time distributed-order and Riesz space fractional diffusion equations. We adopt the same measures for one- and two-dimensional problems as follows: we first transform the time distributed-order fractional diffusion problem into the multi-term time-space fractional diffusion problem with the composite trapezoid formula. Then, we propose a second-order accurate difference scheme based on the interpolation approximation on a special point to solve the resultant problem. Meanwhile, the unconditional stability and convergence of the new difference scheme in L2-norm are proved. Furthermore, we find that the discretizations lead to a series of Toeplitz systems which can be efficiently solved by Krylov subspace methods with suitable circulant preconditioners. Finally, numerical results are presented to show the effectiveness of the proposed difference methods and demonstrate the fast convergence of our preconditioned Krylov subspace methods.
    MSC: 65N06, 65N12, 65F08, 65F10
  • 加载中
  • [1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031

    CrossRef Google Scholar

    [2] A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 2015, 281, 876-895. doi: 10.1016/j.jcp.2014.10.060

    CrossRef Google Scholar

    [3] A. H. Bhrawy and M. A. Zaky, Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations, Nonlinear Dyn., 2017, 89, 1415-1432. doi: 10.1007/s11071-017-3525-y

    CrossRef Google Scholar

    [4] W. Bu, A. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 2017, 72(3), 422-441.

    Google Scholar

    [5] R. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, PA, 2007.

    Google Scholar

    [6] R. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM J. Sci. Stat. Comput., 1989, 10(1), 104-119. doi: 10.1137/0910009

    CrossRef Google Scholar

    [7] A. Chechkin, R. Gorenflo and I. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 2002, 66(4), 046129. doi: 10.1103/PhysRevE.66.046129

    CrossRef Google Scholar

    [8] L. K. Chou and S. L. Lei, Fast ADI method for high dimensional fractional diffusion equations in conservative form with preconditioned strategy, Comput. Math. Appl., 2017, 73(3), 385-403. doi: 10.1016/j.camwa.2016.11.034

    CrossRef Google Scholar

    [9] G. H. Gao, A. A. Alikhanov and Z. Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multiterm and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 2017, 73, 93-121. doi: 10.1007/s10915-017-0407-x

    CrossRef Google Scholar

    [10] G. H. Gao, H. W. Sun and Z. Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys., 2015, 298, 337-359. doi: 10.1016/j.jcp.2015.05.047

    CrossRef Google Scholar

    [11] G. H. Gao and Z. Z. Sun, Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations, Comput. Math. Appl., 2015, 69(9), 926-948. doi: 10.1016/j.camwa.2015.02.023

    CrossRef Google Scholar

    [12] X. M. Gu, T. Z. Huang, B. Carpentieri et al., A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems, Comput. Math. Appl., 2015, 70(12), 3019-3031. doi: 10.1016/j.camwa.2015.10.012

    CrossRef Google Scholar

    [13] X. M. Gu, T. Z. Huang, C. C. Ji et al., Fast iterative method with a second order implicit difference scheme for time-space fractional convection-diffusion equations, J. Sci. Comput., 2017, 72, 957-985. doi: 10.1007/s10915-017-0388-9

    CrossRef Google Scholar

    [14] X. M. Gu, T. Z. Huang, H. B. Li et al., On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations, Appl. Math. Lett., 2015, 42, 53-58. doi: 10.1016/j.aml.2014.11.005

    CrossRef Google Scholar

    [15] X. M. Gu, T. Z. Huang, X. L. Zhao et al., Strang-type preconditioners for solving fractional diffusion equations by boundary value methods, J. Comput. Appl. Math., 2015, 277, 73-86. doi: 10.1016/j.cam.2014.08.011

    CrossRef Google Scholar

    [16] B. Henry, T. Langlands and S. Wearne, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reactiondiffusion equations, Phys. Rev. E, 2006, 74(3), 031116. doi: 10.1103/PhysRevE.74.031116

    CrossRef Google Scholar

    [17] X. Hu, F. Liu, I. Turner and V. Anh, An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation, Numer. Algor., 2016, 72(2), 393-407. doi: 10.1007/s11075-015-0051-1

    CrossRef Google Scholar

    [18] H. Jiang, F. Liu, I. Turner and K. Burrage, Analytical solutions for the multiterm time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 2012, 389(2), 1117-1127. doi: 10.1016/j.jmaa.2011.12.055

    CrossRef Google Scholar

    [19] J. T. Katsikadelis, Numerical solution of distributed order fractional differential equations, J. Comput. Phys., 2014, 259, 11-22. doi: 10.1016/j.jcp.2013.11.013

    CrossRef Google Scholar

    [20] A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 2008, 340(1), 252-281. doi: 10.1016/j.jmaa.2007.08.024

    CrossRef Google Scholar

    [21] S. L. Lei, X. Chen and X. Zhang, Multilevel circulant preconditioner for highdimensional fractional diffusion equations, East Asian J. Appl. Math., 2016, 6(2), 109-130. doi: 10.4208/eajam.060815.180116a

    CrossRef Google Scholar

    [22] S. L. Lei and H. W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 2013, 242, 715-725. doi: 10.1016/j.jcp.2013.02.025

    CrossRef Google Scholar

    [23] C. Li and H. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 2014, 38(15), 3802-3821.

    Google Scholar

    [24] H. Li, X. Wu, J. Zhang et al., Numerical solution of the time-fractional subdiffusion equation on an unbounded domain in two-dimensional space, East. Asia. J. Appl. Math., 2017, 7(3), 439-454. doi: 10.4208/eajam.031116.080317a

    CrossRef Google Scholar

    [25] Z. Li, Y. Luchko and M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem, Comput. Math. Appl., 2017, 73(6), 1041-1052. doi: 10.1016/j.camwa.2016.06.030

    CrossRef Google Scholar

    [26] F. Liu, M. M. Meerschaert, R. J. McGough et al., Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 2013, 16(1), 9-25.

    Google Scholar

    [27] F. Liu, C. Yang and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math., 2009, 231(1), 160-176. doi: 10.1016/j.cam.2009.02.013

    CrossRef Google Scholar

    [28] Q. Liu, F. Liu, I. Turner and V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model., 2011, 35(8), 4103-4116. doi: 10.1016/j.apm.2011.02.036

    CrossRef Google Scholar

    [29] R. L. Magin, O. Abdullah, D. Baleanu and X. J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 2008, 190(2), 255-270. doi: 10.1016/j.jmr.2007.11.007

    CrossRef Google Scholar

    [30] S. Mashayekhi and M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions, J. Comput. Phys., 2016, 315, 169-181. doi: 10.1016/j.jcp.2016.01.041

    CrossRef Google Scholar

    [31] M. M. Meerschaert, E. Nane and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 2011, 379(1), 216-228. doi: 10.1016/j.jmaa.2010.12.056

    CrossRef Google Scholar

    [32] D. Rui, Z. P. Hao and Z. Z. Sun, Lubich second-order methods for distributedorder time-fractional differential equations with smooth solutions, East. Asia. J. Appl. Math., 2016, 6(2), 131-151. doi: 10.4208/eajam.020615.030216a

    CrossRef Google Scholar

    [33] H. Scher and E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 1975, 12(6), 2455.

    Google Scholar

    [34] W. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 1989, 30(1), 134-144. doi: 10.1063/1.528578

    CrossRef Google Scholar

    [35] Z.-Z. Sun and G.-H. Gao, Finite Difference Methods for the Fractional Differential Equations, Science Press, Beijing, 2015. (in Chinese).

    Google Scholar

    [36] K. Wang and H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 2011, 34(7), 810-816. doi: 10.1016/j.advwatres.2010.11.003

    CrossRef Google Scholar

    [37] H. Ye, F. Liu, V. Anh and I. Turner, Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains, IMA J. Appl. Math., 2015, 80(3), 825-838. doi: 10.1093/imamat/hxu015

    CrossRef Google Scholar

    [38] M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn., 2018, 91, 2667-2681. doi: 10.1007/s11071-017-4038-4

    CrossRef Google Scholar

    [39] M. A. Zaky, A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comp. Appl. Math., 2018, 37, 3525-3538. doi: 10.1007/s40314-017-0530-1

    CrossRef Google Scholar

    [40] M. A. Zaky, E. H. Doha and J. A. T. Machado, A spectral numerical method for solving distributed-order fractional initial value problems, J. Comput. Nonlinear Dynam., 2018, 13(10), 101007. doi: 10.1115/1.4041030

    CrossRef Google Scholar

    [41] M. A. Zaky and J. A. T. Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simulat., 2017, 52, 177-189. doi: 10.1016/j.cnsns.2017.04.026

    CrossRef Google Scholar

    [42] X. L. Zhao, T. Z. Huang, S. L. Wu and Y. F. Jing, DCT- and DST-based splitting methods for Toeplitz systems, Int. J. Comput. Math., 2012, 89(5), 691-700. doi: 10.1080/00207160.2011.649264

    CrossRef Google Scholar

Figures(6)  /  Tables(13)

Article Metrics

Article views(3143) PDF downloads(711) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint