[1]
|
H. Berger and M. Howard, A new approach to the analysis of large deflections of plates, Thesis Williams, 1954, 465-472.
Google Scholar
|
[2]
|
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Annales De Linstitut Henri Poincare Non Linear Analysis, 2005, 22(3), 259-281. doi: 10.1016/j.anihpc.2004.07.005
CrossRef Google Scholar
|
[3]
|
J. Ball, Initial-boundary value for an extensible beam, Journal of Mathematical Analysis and Applications, 1973, 42, 61-90. doi: 10.1016/0022-247X(73)90121-2
CrossRef Google Scholar
|
[4]
|
Z. Guo, J. Wei and F. Zhou Singular radial entire solutions and weak solutions with prescribed singular set for a biharmonic equation, Journal of Differential Equations, 2017, 263(2), 1188-1224. doi: 10.1016/j.jde.2017.03.019
CrossRef Google Scholar
|
[5]
|
Y. Huang and Z. Liu, On a class of Kirchhoff type problems, Archiv Der Mathematik, 2014, 102(2), 127-139. doi: 10.1007/s00013-014-0618-4
CrossRef Google Scholar
|
[6]
|
J. Liu, S. Chen and X. Wu, Existence and multiplicity of solutions for a clsaa of fourth-order elliptic equations in ℝN, Journal of Mathematical Analysis and Applications, 2012, 395(2), 608-615. doi: 10.1016/j.jmaa.2012.05.063
CrossRef Google Scholar
|
[7]
|
J. Liu, Y. Wang and Z. Yang, Solutions for quasilinear Schrödinger equations via the Nehari Manifold, Communications in Partial Differential Equations, 2004, 29(5-6), 879-901. doi: 10.1081/PDE-120037335
CrossRef Google Scholar
|
[8]
|
H. Liu, Z. Liu and Q. Xiao, Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity, Applied Mathematics Letters, 2018, 79, 176-181. doi: 10.1016/j.aml.2017.12.015
CrossRef Google Scholar
|
[9]
|
Z. Liu and Z. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Advanced Nonlinear Studies, 2004, 4(4), 563-574.
Google Scholar
|
[10]
|
G. Li and X. Tang, Nehari-type ground state solutions for Schrödinger equations including critical exponent, Applied Mathematics Letters 2014, 37, 101-106. doi: 10.1016/j.aml.2014.06.003
CrossRef Google Scholar
|
[11]
|
A. Michelettir and A. Pistoia, Nontrivial solutions for some fourth-order semilinear elliptic problem, Nonlinear Analysis Theory Methods & Applications, 1998, 34(4), 509-523.
Google Scholar
|
[12]
|
M. Pérez-Llanos and A. Primo, Semilinear biharmonic problems with a singular term, Journal of Differential Equations, 2014, 257(9), 3200-3225. doi: 10.1016/j.jde.2014.06.011
CrossRef Google Scholar
|
[13]
|
J. Sun and T. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, Journal of Differential Equations, 2014, 256(4), 1771-1792. doi: 10.1016/j.jde.2013.12.006
CrossRef Google Scholar
|
[14]
|
J. Sun, J. Chu and T. Wu, Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian, Journal of Differential Equations, 2017, 262(2), 945-977.
Google Scholar
|
[15]
|
T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calculus of Variations and Partial Differential Equations, 2006, 27(4), 421-437. doi: 10.1007/s00526-006-0015-3
CrossRef Google Scholar
|
[16]
|
F. Wang, M. Avci and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, Journal of Mathematical Analysis & Applications, 2014, 409(1), 140-146.
Google Scholar
|
[17]
|
F. Wang, T. An and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type on ℝN, Electronic Journal of Qualitative Theory of Differential Equations, 2014, 39, 1-11.
Google Scholar
|
[18]
|
Y. Ye and C. Tang, Existence and multiplicity of solutions for fourth-order elliptic equations in ℝN, Journal of Mathematical Analysis & Applications, 2013, 406(1), 335-351.
Google Scholar
|
[19]
|
J. Zhang and S. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Analysis, 2005, 60(2), 221-230. doi: 10.1016/j.na.2004.07.047
CrossRef Google Scholar
|
[20]
|
J. Zhou and X. Wu, Sign-changing solutions for some fourth-order nonlinear elliptic problems, Journal of Mathematical Analysis and Applications, 2008, 342(1), 542-558. doi: 10.1016/j.jmaa.2007.12.020
CrossRef Google Scholar
|
[21]
|
G. Zhang and D. Coata, Existence result for a class of biharmonic equations with critical growth and singular potential in ℝN, Applied Mathematics Letters, 2014, 29, 7-12. doi: 10.1016/j.aml.2013.10.006
CrossRef Google Scholar
|
[22]
|
W. Zhang, X. Tang and J. Zhang, Infinitely many solutions for fourth-order elliptic equations with sign-changing potential, Taiwanese Journal of Mathematics 2014, 18(2), 645-659. doi: 10.11650/tjm.18.2014.3584
CrossRef Google Scholar
|
[23]
|
W. Zhang, J. Zhang and Z. Luo, Multiple solutions for the fourth-order elliptic equation with vanishing potential, Applied Mathematics Letters, 2017, 73, 98-105. doi: 10.1016/j.aml.2017.04.030
CrossRef Google Scholar
|