2019 Volume 9 Issue 4
Article Contents

K. Kanagarajan, E. M. Elsayed, S. Harikrishnan. A GENERAL STUDY ON RANDOM INTEGRO-DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1407-1424. doi: 10.11948/2156-907X.20180260
Citation: K. Kanagarajan, E. M. Elsayed, S. Harikrishnan. A GENERAL STUDY ON RANDOM INTEGRO-DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1407-1424. doi: 10.11948/2156-907X.20180260

A GENERAL STUDY ON RANDOM INTEGRO-DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER

  • Here the broad study is depending on random integro-differential equations (RIDE) of arbitrary order. The fractional order is in terms of ψ-Hilfer fractional operator. This work reveals the dynamical behaviour such as existence, uniqueness and stability solutions for RIDE involving fractional order. Thus initial value problem (IVP), boundary value problem (BVP), impulsive effect and nonlocal conditions are taken in account to prove the results.
    MSC: 37H10, 26A33, 37J25
  • 加载中
  • [1] B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed point Theory, 2013, 13, 329-336.

    Google Scholar

    [2] S. Abbas, M. Benchohra, J. R. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, Walter de Gruyter GmbH Co KG, 2018, 26.

    Google Scholar

    [3] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 460-481. doi: 10.1016/j.cnsns.2016.09.006

    CrossRef Google Scholar

    [4] A. Bashir and S. Sivasundaram, Some existence results for fractional integrodifferential equations with nonlocal conditions, Commun. Appl. Anal., 2008, 12, 107-112.

    Google Scholar

    [5] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

    Google Scholar

    [6] R. Hilfer, Application of fractional Calculus in Physics, World Scientific, Singapore, 1999.

    Google Scholar

    [7] S. Harikrishnan, Kamal Shah, Dumitru Baleanu and K. Kanagarajan, Note on the solution of random differential equations via ψ-Hilfer fractional derivative, Adv. Difference Equ., 2018, 2018(224).

    Google Scholar

    [8] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Mathematics Studies, 204, Elsevier, 2006.

    Google Scholar

    [9] V. Lupulescu and S. K. Ntouyas, Random fractional differential equations, International electronic journal of pure and applied mathematics, 2012, 4(2), 119-136.

    Google Scholar

    [10] I. Podlubny, Fractional Differential Equations, 198, Acad. Press, 1999.

    Google Scholar

    [11] T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.

    Google Scholar

    [12] J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72-91. doi: 10.1016/j.cnsns.2018.01.005

    CrossRef Google Scholar

    [13] J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., Accepted Manuscript-2018.

    Google Scholar

    [14] J. Vanterler da C. Sousa and E. Capelas de Oliveira, On a new operator in fractional calculus and applications, arXiv: 1710.03712.

    Google Scholar

    [15] J. Vanterler da C. Sousa, D. Santos Oliveira and E. Capelas de Oliveira, On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation, Math. Meth. Appl. Sci., 2018, 1-13.

    Google Scholar

    [16] E. Capelas de Oliveira and J. Vanterler da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 2018, 73(111).

    Google Scholar

    [17] J. Vanterler da C. Sousa, Kishor D. Kucche and E. Capelas de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 2018.

    Google Scholar

    [18] J. Vanterler da C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv: 1709.03634[math.CA], 2017.

    Google Scholar

    [19] H. Vu, Random fractional functional differential equations, International journal of nonlinear analysis and applications, 2016, 7(2), 253-267.

    Google Scholar

    [20] D. Vivek, K. Kanagarajan and E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 2018, 15, 1-15. doi: 10.1007/s00009-017-1047-y

    CrossRef Google Scholar

    [21] J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011, 63, 1-10.

    Google Scholar

Article Metrics

Article views(2342) PDF downloads(584) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint