[1]
|
B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed point Theory, 2013, 13, 329-336.
Google Scholar
|
[2]
|
S. Abbas, M. Benchohra, J. R. Graef and J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, Walter de Gruyter GmbH Co KG, 2018, 26.
Google Scholar
|
[3]
|
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44, 460-481. doi: 10.1016/j.cnsns.2016.09.006
CrossRef Google Scholar
|
[4]
|
A. Bashir and S. Sivasundaram, Some existence results for fractional integrodifferential equations with nonlocal conditions, Commun. Appl. Anal., 2008, 12, 107-112.
Google Scholar
|
[5]
|
A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
Google Scholar
|
[6]
|
R. Hilfer, Application of fractional Calculus in Physics, World Scientific, Singapore, 1999.
Google Scholar
|
[7]
|
S. Harikrishnan, Kamal Shah, Dumitru Baleanu and K. Kanagarajan, Note on the solution of random differential equations via ψ-Hilfer fractional derivative, Adv. Difference Equ., 2018, 2018(224).
Google Scholar
|
[8]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: Mathematics Studies, 204, Elsevier, 2006.
Google Scholar
|
[9]
|
V. Lupulescu and S. K. Ntouyas, Random fractional differential equations, International electronic journal of pure and applied mathematics, 2012, 4(2), 119-136.
Google Scholar
|
[10]
|
I. Podlubny, Fractional Differential Equations, 198, Acad. Press, 1999.
Google Scholar
|
[11]
|
T. T. Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.
Google Scholar
|
[12]
|
J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72-91. doi: 10.1016/j.cnsns.2018.01.005
CrossRef Google Scholar
|
[13]
|
J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., Accepted Manuscript-2018.
Google Scholar
|
[14]
|
J. Vanterler da C. Sousa and E. Capelas de Oliveira, On a new operator in fractional calculus and applications, arXiv: 1710.03712.
Google Scholar
|
[15]
|
J. Vanterler da C. Sousa, D. Santos Oliveira and E. Capelas de Oliveira, On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation, Math. Meth. Appl. Sci., 2018, 1-13.
Google Scholar
|
[16]
|
E. Capelas de Oliveira and J. Vanterler da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 2018, 73(111).
Google Scholar
|
[17]
|
J. Vanterler da C. Sousa, Kishor D. Kucche and E. Capelas de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 2018.
Google Scholar
|
[18]
|
J. Vanterler da C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv: 1709.03634[math.CA], 2017.
Google Scholar
|
[19]
|
H. Vu, Random fractional functional differential equations, International journal of nonlinear analysis and applications, 2016, 7(2), 253-267.
Google Scholar
|
[20]
|
D. Vivek, K. Kanagarajan and E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 2018, 15, 1-15. doi: 10.1007/s00009-017-1047-y
CrossRef Google Scholar
|
[21]
|
J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011, 63, 1-10.
Google Scholar
|