[1]
|
R. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys., 1972, 70(1), 193-228.
Google Scholar
|
[2]
|
A. Cibotarica, J. Ding, J. Kolibal, and N. Rhee, Solutions of the Yang-Baxter matrix equation for an idempotent, Numer. Algbra Control Optim., 2013, 3(2), 347-352.
Google Scholar
|
[3]
|
J. Ding and N. Rhee, Spectral solutions of the Yang-Baxter matrix equation, J. Math. Anal. Appl., 2013,402(2), 567-573.
Google Scholar
|
[4]
|
Q. Dong and J. Ding, Complete commuting solutions of the Yang-Baxter-like matrix equation for diagonalizable matrices, Computers Math. Appl., 2016, 72(1), 194-201.
Google Scholar
|
[5]
|
Q. Dong, J. Ding and Q. Huang, Commuting solutions of a quadratic matrix equation for nilpotent matrices, Algebra Colloquium, 2018, 25(1), 31-44.
Google Scholar
|
[6]
|
Q. Huang, M. Saeed Ibrahim Adam, J. Ding and L. Zhu, All non-commuting solutions of the Yang-Baxter matrix equation for a class of diagonalizable matrices, Operators and Matrices., 2019, 13(1), 187-195.
Google Scholar
|
[7]
|
C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Cambridge University Press, 2000.
Google Scholar
|
[8]
|
M. Saeed Ibrahim Adam, J. Ding and Q. Huang, Expresssion of solutions of the Yang-Baxter-like matrix equation for an idempotent, Appl. Math. Lett., 2017, 63, 71-76.
Google Scholar
|
[9]
|
M. Saeed Ibrahim Adam, J. Ding, Q. Huang and L. Zhu, Solving a class of quadratic matrix equations, Appl. Math. Lett., 2018, 82, 58-63.
Google Scholar
|
[10]
|
D. Shen, M. Wei and Z. Jia, On commuting solutions of the Yang-Baxter-like matrix equation, J. Math. Anal. Appl., 2018,462(1), 665-696.
Google Scholar
|
[11]
|
C. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett., 1967, 19(23), 1312-1315.
Google Scholar
|
[12]
|
C. Yang and M. Ge, Braid Group, Knot Theory, and Statistical Mechanics, World Scientific, Singapore, 1989.
Google Scholar
|
[13]
|
D. Zhou, G. Chen and J. Ding, Solving the Yang-Baxter-like matrix equation for rank two matrices, J. Comput. Appl. Math., 2017,313,142-151.
Google Scholar
|