Citation: | Wanlou Wu, Bo Li. ON THE F-EXPANDING OF HOMOCLINIC CLASSES[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1083-1101. doi: 10.11948/2156-907X.20180287 |
[1] | C. Bonatti, L. Díaz and M. Viana, Dynamics beyond uniform hyperbolicity, Springer-Verlag, Berlin, 2005. |
[2] | C. Bonatti, S. Gan and D. Yang, On the hyperbolicity of homoclinic classes, Discrete Contin. Dyn. Syst., 2009, 25(4), 1143-1162. doi: 10.3934/dcdsa |
[3] | C. Carballo, C. Morales and M. Pacifico, Homoclinic classes for generic C1 vector fields, Ergodic Theory Dyn. Syst., 2003, 23(2), 403-415. |
[4] | S. Crovisier, Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Ann. of Math., 2010, 172(3), 1641-1677. doi: 10.4007/annals |
[5] | S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Adv. Math., 2011, 226(1), 673-726. doi: 10.1016/j.aim.2010.07.013 |
[6] | S. Crovisier, Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms, Invent. Math., 2015, 201(2), 385-517. doi: 10.1007/s00222-014-0553-9 |
[7] | S. Crovisier, M. Sambarino and D. Yang Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc., 2015, 17(1), 1-49. doi: 10.4171/JEMS |
[8] | L. Díaz and B. Santoro, Collision, explosion and collapse of homoclinic classes, Nonlinearity, 2004, 17(3), 1001-1032. doi: 10.1088/0951-7715/17/3/013 |
[9] |
S. Gan, The star systems $\mathcal{X}^*$ and a proof of the $C^1~\Omega$-stability conjecture for flows, J. Diff. Equations, 2000, 163(1), 1-17. doi: 504 Gateway Time-outThe server didn't respond in time. CrossRef $\mathcal{X}^*$ and a proof of the |
[10] | S. Gan, A generalized shadowing lemma, Discrete Contin. Dyn. Syst., 2002, 8(3), 627-632. doi: 10.3934/dcdsa |
[11] | N. Gourmelon, Adapted metrics for dominated splittings, Ergodic Theory Dyn. Syst., 2007, 27(6), 1839-1849. doi: 10.1017/S0143385707000272 |
[12] | M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Springer-Verlag, Berlin-New York, 1977. |
[13] | A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge, 1995. |
[14] | S. Liao, On the stability conjecture, Chinese Ann. Math., 1980, 1(1), 9-30. |
[15] | S. Liao, On hyperbolicity properties of nonwandering sets of certain 3-dimensional differential systems, Acta Math. Sci. (English Ed.), 1983, 252(4), 361-368. |
[16] | R. Mañé, An ergodic closing lemma, Ann. of Math., 1982, 116(3), 503-540. doi: 10.2307/2007021 |
[17] | R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., 1985, 100(4), 495-524. doi: 10.1007/BF01217727 |
[18] | S. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc., 1972, 167, 125-150. doi: 10.1090/S0002-9947-1972-0295388-6 |
[19] | J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. |
[20] | S. Pilyugin, Shadowing in dynamical systems, Springer-Verlag, Berlin, 1706. |
[21] | V. Pliss, On a conjecture of Smale, Differencialńye Uravnenija, 1972, 8, 268-282. |
[22] | S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 1967, 73, 747-817. doi: 10.1090/S0002-9904-1967-11798-1 |
[23] | W. Sun and Y. Yang, Hyperbolic periodic points for chain hyperbolic homoclinic classes, Discrete Contin. Dyn. Syst., 2016, 36(7), 3911-3925. doi: 10.3934/dcdsa |
[24] |
L. Wen, On the $C^1$ stability conjecture for flows, J. Diff. Equations, 1996, 129(2), 334-357. doi: 10.1006/jdeq.1996.0121
CrossRef $C^1$ stability conjecture for flows" target="_blank">Google Scholar |
[25] | L. Wen, On the preperiodic set, Discrete Contin. Dyn. Syst., 2000, 6(1), 237-241. |