2019 Volume 9 Issue 3
Article Contents

Hailong Zhu, Zhaoxiang Li. NONUNIFORM DICHOTOMY SPECTRUM INTERVALS: THEOREM AND COMPUTATION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1102-1119. doi: 10.11948/2156-907X.20180297
Citation: Hailong Zhu, Zhaoxiang Li. NONUNIFORM DICHOTOMY SPECTRUM INTERVALS: THEOREM AND COMPUTATION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1102-1119. doi: 10.11948/2156-907X.20180297

NONUNIFORM DICHOTOMY SPECTRUM INTERVALS: THEOREM AND COMPUTATION

  • Corresponding author: Email address:zxli@shnu.edu.cn(Z. Li)
  • Fund Project: The first author was supported by the NSF of China (No. 11671118), China Postdoctoral Science Foundation funded project (No. 2016M591697), NSF of Anhui Province of China(No. gxfxZD2016090 and No. KJ2018A0437). The second author was supported by the NSF of China (No. 11871043, No. 11771298 and No. 11671251) and China Postdoctoral Science Foundation(No.2015M571538)
  • In this paper, on the condition of nonuniformly bounded growth, we give the relationship between the nonuniform exponential dichotomy spectrum and the other two classical spectrums (the Lyapunov spectrum and Sacker-Sell spectrum), present their stability under small linear perturbations. The main goal of this paper is to discuss the theory for the computation of these spectrums on the condition of nonuniformly bounded growth, and this extends the work of Dieci and Vleck [22], which computes the Lyapunov spectrum and Sacker-Sell spectrum under the condition of bounded. Finally, the numerical examples are given to illustrate and verify the theoretical results.
    MSC: 34D08, 34D09
  • 加载中
  • [1] L. Y. Adrianova, Introduction to Linear Systems of Differential Equations, Transl. Math. Monographs 146, AMS, Providence, RI, 1995.

    Google Scholar

    [2] B. Aulbach and N. Minh, The concept of spectral dichotomy for linear difference equations ii, J. Math. Anal. Appl., 1996, 2, 251-262.

    Google Scholar

    [3] B. Aulbach, N. Minh and P. Zabreiko, The concept of spectral dichotomy for linear difference equations, J. Math. Anal. Appl., 1994, 185, 275-287. doi: 10.1006/jmaa.1994.1248

    CrossRef Google Scholar

    [4] B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations, J. Math. Anal. Appl., 2001, 7, 895-913.

    Google Scholar

    [5] B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, New trends in difference equations, (Temuco, 2000), 45-55, Taylor & Francis, London, 2002.

    Google Scholar

    [6] E. Barabanov and N. Denisenko, Necessary and sufficient conditions for the stability of lyapunov exponents of linear differential systems with exponentially decaying perturbations, Diff. Eqs., 2007, 43(2), 168-179. doi: 10.1134/S001226610702005X

    CrossRef Google Scholar

    [7] L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy, J. Diff. Eqs, 2006, 221(1), 58-90. doi: 10.1016/j.jde.2005.04.005

    CrossRef Google Scholar

    [8] L. Barreira and C. Valls, Nonuniform exponential dichotomies and lyapunov regularity, J. Dynam. Diff. Eqs, 2007, 19(1), 215-241.

    Google Scholar

    [9] L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in banach spaces, J. Diff. Eqs, 2008, 244(10), 2407-2447. doi: 10.1016/j.jde.2008.02.028

    CrossRef Google Scholar

    [10] L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations Lect. Notes Math., vol. 1926, Springer, Berlin, 2008.

    Google Scholar

    [11] S. Bodine and R. Sacker, A new approach to asymptotic diagonalization of linear differential systems, J. Dynam. Diff. Eqs, 2000, 12(1), 229-245. doi: 10.1023/A:1009054904419

    CrossRef Google Scholar

    [12] B. Bylov, On the stability of characteristic exponents of systems of linear differential equations, Dissertation, Moscow, 1954.

    Google Scholar

    [13] B. Bylov, On the reduction of systems of linear equations to the diagonal form, Math. Sb., 1965, 67, 338-334.

    Google Scholar

    [14] B. Bylov and N.A.Izobov, Necessary and sufficient conditions for stability of characteristic exponents of a linear system, Differ. Uravn., 1969, 5, 1794-1903.

    Google Scholar

    [15] B. Bylov, R. Vinograd, D. M. Grobman and V. Nemyckii, The theory of Lyapunov exponents and its applications to problems of stability, Nauka, Moscow, 1966.

    Google Scholar

    [16] J. Chu, F. Liao, S. Siegmund et al., Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 2015, 139(5), 538-557. doi: 10.1016/j.bulsci.2014.11.002

    CrossRef Google Scholar

    [17] W. Coppel, Dichotomy in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, New York/Berlin, 1978.

    Google Scholar

    [18] L. Dieci and C. Elia, The singular value decomposition to approximate spectra of dynamical systems. theoretical aspects, J. Diff Eqs., 2006, 230(2), 502-531. doi: 10.1016/j.jde.2006.08.007

    CrossRef Google Scholar

    [19] L. Dieci, C. Elia and E. V. Vleck, Detecting exponential dichotomy on the real line: Svd and qr algorithms, BIT, 2011, 51(3), 555-579. doi: 10.1007/s10543-010-0306-0

    CrossRef Google Scholar

    [20] L. Dieci, M. Jolly, R. Rosa and E. V. Vleck, Error in approximation of lyapunov exponents on inertial manifolds: the kuramoto-sivashinsky equation, Disc Cont. Dyn. Syst., Ser. B, 2008, 9, 555-580.

    Google Scholar

    [21] L. Dieci and E. V. Vleck, Lyapunov and other spectra: A survey, in Collected Lectures on the Preservation of Stability Under Discretization, D. Estep and S. Tavener, eds., SIAM, Philadelphia, 2002.

    Google Scholar

    [22] L. Dieci and E. V. Vleck, Lyapunov spectral intervals: theory and computation, SIAM J. Numer. Anal., 2002, 40(2), 516-542. doi: 10.1137/S0036142901392304

    CrossRef Google Scholar

    [23] L. Dieci and E. V. Vleck, Lyapunov and sacker-sell spectral intervals, J. Dynam. Diff. Eqs., 2007, 19(2), 265-293. doi: 10.1007/s10884-006-9030-5

    CrossRef Google Scholar

    [24] T. Doan, D. Karrasch, T. Nguyen and S. Siegmund, A unified approach to finite-time hyperbolicity which extends finite-time lyapunov exponents, J. Differ. Eqs., 2012, 252, 5535-5554. doi: 10.1016/j.jde.2012.02.002

    CrossRef Google Scholar

    [25] T. Doan, K. Palmer and S. Siegmund, Transient spectral theory, stable and unstable cones and ger-shgorin's theorem for finite-time differential equations, J. Differ. Eqs., 2011, 250, 4177-4199. doi: 10.1016/j.jde.2011.01.013

    CrossRef Google Scholar

    [26] G. Froyland, T. Hüls, G. Morriss and T. Watson, Computing covariant lyapunov vectors, oseledets vectors, and dichotomy projectors: a comparative numerical study, Phys. D, 2013, 247(1), 18-39.

    Google Scholar

    [27] T. Hüls, Computing sacker-sell spectra in discrete time dynamical systems, SIAM J. Numer. Anal., 2010, 48(6), 2043-2064. doi: 10.1137/090754509

    CrossRef Google Scholar

    [28] A. Lyapunov, The general problem of the stability of motion, Taylor & Francis, 1992.

    Google Scholar

    [29] V. Millionščikov, Structurally stable properties of linear systems of differential equations, Differ. Uravn., 1969, 5, 1775-1784.

    Google Scholar

    [30] V. Millionščikov, Systems with integral division which are everywhere dense in the set of all linear systems of differential equations, Differ. Uravn., 1969, 5, 1167-1170.

    Google Scholar

    [31] K. Palmer, Exponential dichotomy, integral separation and diagonalizability of linear systems of ordinary differential equations, J. Diff. Eqs., 1982, 43(2), 184-203. doi: 10.1016/0022-0396(82)90090-0

    CrossRef Google Scholar

    [32] C. Pötzsche, A note on the dichotomy spectrum, J. Diff. Eqs. Appl., 2009, 15, 1021-1025. doi: 10.1080/10236190802320147

    CrossRef Google Scholar

    [33] C. Pötzsche, Fine structure of the dichotomy spectrum, Integr. Equat. Oper. Th., 2012, 73, 107-151. doi: 10.1007/s00020-012-1959-7

    CrossRef Google Scholar

    [34] R. Sacker and G. Sell, Existence of dichotomies and invariant splitting for linear differential systems ⅰⅱ, ⅲ, J. Diff. Eqs., 1974(1976), 15(22), 429-458(478-496).

    Google Scholar

    [35] R. Sacker and G. Sell, A spectral theory for linear differential systems, J. Diff. Eqs., 1978, 27, 320-358. doi: 10.1016/0022-0396(78)90057-8

    CrossRef Google Scholar

    [36] S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Diff. Eqs., 2002, 14, 243-258. doi: 10.1023/A:1012919512399

    CrossRef Google Scholar

    [37] S. Siegmund, Normal forms for nonautonomous differential equations, J. Diff. Eqs., 2002, 178, 541-573. doi: 10.1006/jdeq.2000.4008

    CrossRef Google Scholar

    [38] S. Siegmund, Reducibility of nonautonomous linear differential equations, J. Lond. Math. Soc., 2002, 65, 397-410. doi: 10.1112/S0024610701002897

    CrossRef Google Scholar

    [39] R. Vinograd, A Remark on the Theory of Lyapunov Characteristic Exponents, Dissertation, Moscow, 1960.

    Google Scholar

    [40] X. Zhang, Nonuniform dichotomy spectrum and normal forms for nonautonomous differential systems, J. Funct. Anal., 2014, 267(7), 1889-1916. doi: 10.1016/j.jfa.2014.07.029

    CrossRef Google Scholar

    [41] H. Zhu, Stability of lyapunov exponents, weak integral separation and nonuniform dichotomy spectrum, preprint.

    Google Scholar

    [42] H. Zhu and J. Chu, Mean-square exponential dichotomy of numerical solutions to stochastic differential equations, J. Appl. Anal. Comput., 2016, 6(2), 463-478.

    Google Scholar

Tables(4)

Article Metrics

Article views(2419) PDF downloads(563) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint