[1]
|
L. Y. Adrianova, Introduction to Linear Systems of Differential Equations, Transl. Math. Monographs 146, AMS, Providence, RI, 1995.
Google Scholar
|
[2]
|
B. Aulbach and N. Minh, The concept of spectral dichotomy for linear difference equations ii, J. Math. Anal. Appl., 1996, 2, 251-262.
Google Scholar
|
[3]
|
B. Aulbach, N. Minh and P. Zabreiko, The concept of spectral dichotomy for linear difference equations, J. Math. Anal. Appl., 1994, 185, 275-287. doi: 10.1006/jmaa.1994.1248
CrossRef Google Scholar
|
[4]
|
B. Aulbach and S. Siegmund, The dichotomy spectrum for noninvertible systems of linear difference equations, J. Math. Anal. Appl., 2001, 7, 895-913.
Google Scholar
|
[5]
|
B. Aulbach and S. Siegmund, A spectral theory for nonautonomous difference equations, New trends in difference equations, (Temuco, 2000), 45-55, Taylor & Francis, London, 2002.
Google Scholar
|
[6]
|
E. Barabanov and N. Denisenko, Necessary and sufficient conditions for the stability of lyapunov exponents of linear differential systems with exponentially decaying perturbations, Diff. Eqs., 2007, 43(2), 168-179. doi: 10.1134/S001226610702005X
CrossRef Google Scholar
|
[7]
|
L. Barreira and C. Valls, Stable manifolds for nonautonomous equations without exponential dichotomy, J. Diff. Eqs, 2006, 221(1), 58-90. doi: 10.1016/j.jde.2005.04.005
CrossRef Google Scholar
|
[8]
|
L. Barreira and C. Valls, Nonuniform exponential dichotomies and lyapunov regularity, J. Dynam. Diff. Eqs, 2007, 19(1), 215-241.
Google Scholar
|
[9]
|
L. Barreira and C. Valls, Robustness of nonuniform exponential dichotomies in banach spaces, J. Diff. Eqs, 2008, 244(10), 2407-2447. doi: 10.1016/j.jde.2008.02.028
CrossRef Google Scholar
|
[10]
|
L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations Lect. Notes Math., vol. 1926, Springer, Berlin, 2008.
Google Scholar
|
[11]
|
S. Bodine and R. Sacker, A new approach to asymptotic diagonalization of linear differential systems, J. Dynam. Diff. Eqs, 2000, 12(1), 229-245. doi: 10.1023/A:1009054904419
CrossRef Google Scholar
|
[12]
|
B. Bylov, On the stability of characteristic exponents of systems of linear differential equations, Dissertation, Moscow, 1954.
Google Scholar
|
[13]
|
B. Bylov, On the reduction of systems of linear equations to the diagonal form, Math. Sb., 1965, 67, 338-334.
Google Scholar
|
[14]
|
B. Bylov and N.A.Izobov, Necessary and sufficient conditions for stability of characteristic exponents of a linear system, Differ. Uravn., 1969, 5, 1794-1903.
Google Scholar
|
[15]
|
B. Bylov, R. Vinograd, D. M. Grobman and V. Nemyckii, The theory of Lyapunov exponents and its applications to problems of stability, Nauka, Moscow, 1966.
Google Scholar
|
[16]
|
J. Chu, F. Liao, S. Siegmund et al., Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 2015, 139(5), 538-557. doi: 10.1016/j.bulsci.2014.11.002
CrossRef Google Scholar
|
[17]
|
W. Coppel, Dichotomy in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, New York/Berlin, 1978.
Google Scholar
|
[18]
|
L. Dieci and C. Elia, The singular value decomposition to approximate spectra of dynamical systems. theoretical aspects, J. Diff Eqs., 2006, 230(2), 502-531. doi: 10.1016/j.jde.2006.08.007
CrossRef Google Scholar
|
[19]
|
L. Dieci, C. Elia and E. V. Vleck, Detecting exponential dichotomy on the real line: Svd and qr algorithms, BIT, 2011, 51(3), 555-579. doi: 10.1007/s10543-010-0306-0
CrossRef Google Scholar
|
[20]
|
L. Dieci, M. Jolly, R. Rosa and E. V. Vleck, Error in approximation of lyapunov exponents on inertial manifolds: the kuramoto-sivashinsky equation, Disc Cont. Dyn. Syst., Ser. B, 2008, 9, 555-580.
Google Scholar
|
[21]
|
L. Dieci and E. V. Vleck, Lyapunov and other spectra: A survey, in Collected Lectures on the Preservation of Stability Under Discretization, D. Estep and S. Tavener, eds., SIAM, Philadelphia, 2002.
Google Scholar
|
[22]
|
L. Dieci and E. V. Vleck, Lyapunov spectral intervals: theory and computation, SIAM J. Numer. Anal., 2002, 40(2), 516-542. doi: 10.1137/S0036142901392304
CrossRef Google Scholar
|
[23]
|
L. Dieci and E. V. Vleck, Lyapunov and sacker-sell spectral intervals, J. Dynam. Diff. Eqs., 2007, 19(2), 265-293. doi: 10.1007/s10884-006-9030-5
CrossRef Google Scholar
|
[24]
|
T. Doan, D. Karrasch, T. Nguyen and S. Siegmund, A unified approach to finite-time hyperbolicity which extends finite-time lyapunov exponents, J. Differ. Eqs., 2012, 252, 5535-5554. doi: 10.1016/j.jde.2012.02.002
CrossRef Google Scholar
|
[25]
|
T. Doan, K. Palmer and S. Siegmund, Transient spectral theory, stable and unstable cones and ger-shgorin's theorem for finite-time differential equations, J. Differ. Eqs., 2011, 250, 4177-4199. doi: 10.1016/j.jde.2011.01.013
CrossRef Google Scholar
|
[26]
|
G. Froyland, T. Hüls, G. Morriss and T. Watson, Computing covariant lyapunov vectors, oseledets vectors, and dichotomy projectors: a comparative numerical study, Phys. D, 2013, 247(1), 18-39.
Google Scholar
|
[27]
|
T. Hüls, Computing sacker-sell spectra in discrete time dynamical systems, SIAM J. Numer. Anal., 2010, 48(6), 2043-2064. doi: 10.1137/090754509
CrossRef Google Scholar
|
[28]
|
A. Lyapunov, The general problem of the stability of motion, Taylor & Francis, 1992.
Google Scholar
|
[29]
|
V. Millionščikov, Structurally stable properties of linear systems of differential equations, Differ. Uravn., 1969, 5, 1775-1784.
Google Scholar
|
[30]
|
V. Millionščikov, Systems with integral division which are everywhere dense in the set of all linear systems of differential equations, Differ. Uravn., 1969, 5, 1167-1170.
Google Scholar
|
[31]
|
K. Palmer, Exponential dichotomy, integral separation and diagonalizability of linear systems of ordinary differential equations, J. Diff. Eqs., 1982, 43(2), 184-203. doi: 10.1016/0022-0396(82)90090-0
CrossRef Google Scholar
|
[32]
|
C. Pötzsche, A note on the dichotomy spectrum, J. Diff. Eqs. Appl., 2009, 15, 1021-1025. doi: 10.1080/10236190802320147
CrossRef Google Scholar
|
[33]
|
C. Pötzsche, Fine structure of the dichotomy spectrum, Integr. Equat. Oper. Th., 2012, 73, 107-151. doi: 10.1007/s00020-012-1959-7
CrossRef Google Scholar
|
[34]
|
R. Sacker and G. Sell, Existence of dichotomies and invariant splitting for linear differential systems ⅰⅱ, ⅲ, J. Diff. Eqs., 1974(1976), 15(22), 429-458(478-496).
Google Scholar
|
[35]
|
R. Sacker and G. Sell, A spectral theory for linear differential systems, J. Diff. Eqs., 1978, 27, 320-358. doi: 10.1016/0022-0396(78)90057-8
CrossRef Google Scholar
|
[36]
|
S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Diff. Eqs., 2002, 14, 243-258. doi: 10.1023/A:1012919512399
CrossRef Google Scholar
|
[37]
|
S. Siegmund, Normal forms for nonautonomous differential equations, J. Diff. Eqs., 2002, 178, 541-573. doi: 10.1006/jdeq.2000.4008
CrossRef Google Scholar
|
[38]
|
S. Siegmund, Reducibility of nonautonomous linear differential equations, J. Lond. Math. Soc., 2002, 65, 397-410. doi: 10.1112/S0024610701002897
CrossRef Google Scholar
|
[39]
|
R. Vinograd, A Remark on the Theory of Lyapunov Characteristic Exponents, Dissertation, Moscow, 1960.
Google Scholar
|
[40]
|
X. Zhang, Nonuniform dichotomy spectrum and normal forms for nonautonomous differential systems, J. Funct. Anal., 2014, 267(7), 1889-1916. doi: 10.1016/j.jfa.2014.07.029
CrossRef Google Scholar
|
[41]
|
H. Zhu, Stability of lyapunov exponents, weak integral separation and nonuniform dichotomy spectrum, preprint.
Google Scholar
|
[42]
|
H. Zhu and J. Chu, Mean-square exponential dichotomy of numerical solutions to stochastic differential equations, J. Appl. Anal. Comput., 2016, 6(2), 463-478.
Google Scholar
|