2019 Volume 9 Issue 3
Article Contents

Lan Xu. THE STABILITY OF HAUSDORFF DIMENSION FOR THE LEVEL SETS UNDER THE PERTURBATION OF CONFORMAL REPELLERS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1120-1131. doi: 10.11948/2156-907X.20180349
Citation: Lan Xu. THE STABILITY OF HAUSDORFF DIMENSION FOR THE LEVEL SETS UNDER THE PERTURBATION OF CONFORMAL REPELLERS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1120-1131. doi: 10.11948/2156-907X.20180349

THE STABILITY OF HAUSDORFF DIMENSION FOR THE LEVEL SETS UNDER THE PERTURBATION OF CONFORMAL REPELLERS

  • Corresponding author: Email address: xlan@jssvc.edu.cn(L. Xu)
  • Fund Project: The author is supported by National Natural Science Foundation of China (No.11871361)
  • Let $ M $ be a $ C^\infty $ compact Riemann manifold. $ f:M\to M $ is a $ C^1 $ map and $ \Lambda_f \subset M $ is a conformal repeller of $ f $. Suppose $ \varphi:M\to\mathbb{R} $ is a continuous function and let $ f_k $ be nonconformal perturbation of the map $ f $. We consider the stability of Hausdorff dimension of level sets for Birkhorff average of potential function $ \varphi $ with respect to $ f_k $ and $ f $.
    MSC: 37C05, 37C45
  • 加载中
  • [1] J. Barrel and Y. H. Qu, Localized asymptotic behavoir for almost additive potential, Discrete and Continuous Dynamical Systems, 2012, 32(3), 717-751.

    Google Scholar

    [2] L. Barreira and P. Doutor, Almost additive multifractal analysis, J.Math.Pures Appl., 2009, 92, 1-17. doi: 10.1016/j.matpur.2009.04.006

    CrossRef Google Scholar

    [3] L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc., 2001, 353, 3919-3944. doi: 10.1090/S0002-9947-01-02844-6

    CrossRef Google Scholar

    [4] L. Barreira, B. Saussol and J.Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl, 2002, 81, 67-91. doi: 10.1016/S0021-7824(01)01228-4

    CrossRef Google Scholar

    [5] Y. Cao, Dimension spectrum of asymptotically additive potentials for C1 average conformal repellers, Nonlinearity, 2013, 26(9), 2441-2468. doi: 10.1088/0951-7715/26/9/2441

    CrossRef Google Scholar

    [6] D. Feng, K. Lau, J. Wu, Ergodic limits on the conformal repellers, Advances in Mathematics, 2002, 169, 58-91. doi: 10.1006/aima.2001.2054

    CrossRef Google Scholar

    [7] Y. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for confromal expanding maps and Moran-like geometric constructions, J. Statist. Phys., 1997, 86, 233-275. doi: 10.1007/BF02180206

    CrossRef Google Scholar

    [8] Y. Pesin, Dimension Theory in Dynamical Systems Contemporary Views and Application, IL: University of Chicago Press, Chicago, 1997.

    Google Scholar

    [9] P. Walters, An Introduction to Ergodic Theory, Berlin: Springer, 1982.

    Google Scholar

    [10] H. Weiss, The Lyapunov spectrum of equilibrium measures for conformal expanding maps and Axiom-A surface diffeomorphisms, J. Stat. Phys., 1999, 95, 615-632. doi: 10.1023/A:1004591209134

    CrossRef Google Scholar

Article Metrics

Article views(2221) PDF downloads(485) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint