[1]
|
R. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 1983, 27(3), 201-210. doi: 10.1122/1.549724
CrossRef Google Scholar
|
[2]
|
Z. Bai and Y. Zhang, Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput., 2011, 218(5), 1719-1725.
Google Scholar
|
[3]
|
Z. Bai, Y. Chen, H. Lian and S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1175-1187.
Google Scholar
|
[4]
|
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonl. Anal., 1998, 11(2), 283-293. doi: 10.12775/TMNA.1998.019
CrossRef Google Scholar
|
[5]
|
Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 2016, 51, 48-54. doi: 10.1016/j.aml.2015.07.002
CrossRef Google Scholar
|
[6]
|
B. Cheng and X. Tang, New existence of solutions for the Fractional pLaplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math., 2016, 13(5), 3373-3387. doi: 10.1007/s00009-016-0691-y
CrossRef Google Scholar
|
[7]
|
X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 2013, 54, Article ID 061504.
Google Scholar
|
[8]
|
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003, 2003(54), 3413-3442. doi: 10.1155/S0161171203301486
CrossRef Google Scholar
|
[9]
|
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-GordonMaxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5), 893-906. doi: 10.1017/S030821050000353X
CrossRef Google Scholar
|
[10]
|
P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142(6), 1237-1262. doi: 10.1017/S0308210511000746
CrossRef Google Scholar
|
[11]
|
Y. Guo, Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations, Bull. Korean Math. Soc., 2010, 47(1), 81-87. doi: 10.4134/BKMS.2010.47.1.081
CrossRef Google Scholar
|
[12]
|
Y. Guo, Nontrivial periodic solutions of nonlinear functional differential systems with feedback control, Turkish J. Math., 2010, 34(1), 35-44.
Google Scholar
|
[13]
|
X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and pLaplacian operator, Bound. Value Probl., 2017, Article ID 182, 18.
Google Scholar
|
[14]
|
J. He, X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions, Bound. Value Probl., 2018, Article ID 189, 17.
Google Scholar
|
[15]
|
X. He, A. Qian and W. Zou, Existence and concentration of positive solutions for quasi-linear Schrödinger equations with critical growth, Nonlinearity, 2013, 26(12), 3137-3168. doi: 10.1088/0951-7715/26/12/3137
CrossRef Google Scholar
|
[16]
|
H. Hajaiej, X. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 2012, 396(2), 569-577. doi: 10.1016/j.jmaa.2012.06.054
CrossRef Google Scholar
|
[17]
|
S. Khoutir and H. Chen, Multiple nontrivial solutions for a nonhomogeneous Schrödinger-Poisson system in ℝ3, Electron. J. Qual. Theory Differ. Equ., 2017, 2017(28), 1-17.
Google Scholar
|
[18]
|
E. Lieb and M. Loss, Analysis, Vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2001.
Google Scholar
|
[19]
|
K. Li, Existence of nontrivial solutions for nonlinear fractional SchrödingerPoisson equations, Appl. Math. Lett., 2017, 72, 1-9. doi: 10.1016/j.aml.2017.03.023
CrossRef Google Scholar
|
[20]
|
L. Li, A. Boucherif and N. Daoudi-Merzagui, Multiple solutions for 4- superlinear Klein-Gordon-Maxwell system without odd nonlinearity, Taiwanese J. Math., 2017, 21(1), 151-165. doi: 10.11650/tjm.21.2017.7680
CrossRef Google Scholar
|
[21]
|
J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 2018, 40, 428-443. doi: 10.1016/j.nonrwa.2017.09.008
CrossRef Google Scholar
|
[22]
|
A. Mao and H. Chang, Kirchhoff type problems in RN with radial potentials and locally Lipschitz functional, Appl. Math. Lett., 2016, 62, 49-54. doi: 10.1016/j.aml.2016.06.014
CrossRef Google Scholar
|
[23]
|
A. Mao and W. Wang, Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in ℝ3, J. Math. Anal. Appl., 2018, 459(1), 556-563. doi: 10.1016/j.jmaa.2017.10.020
CrossRef Google Scholar
|
[24]
|
A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett., 2017, 68, 8-12. doi: 10.1016/j.aml.2016.12.014
CrossRef Google Scholar
|
[25]
|
P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in ℝN, Calc. Var., 2015, 54(3), 2785-2806. doi: 10.1007/s00526-015-0883-5
CrossRef Google Scholar
|
[26]
|
A. Qian, Infinitely many sign-changing solutions for a Schrödinger equation, Adv. Difference Equ., 2011, Article ID 39, 6.
Google Scholar
|
[27]
|
A. Qian and C. Li, Infinitely many solutions for a Robin boundary value problem, Int. J. Differ. Equ., 2010, Article ID 548702, 9.
Google Scholar
|
[28]
|
S. Secchi, Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Var. Elliptic Equ., 2017, 62(5), 654-669. doi: 10.1080/17476933.2016.1234465
CrossRef Google Scholar
|
[29]
|
Z. Shen and F. Gao, On the existence of solutions for the critical fractional Laplacian equation in ℝN, Abstract Appl. Anal., 2014, Article ID 143741, 10.
Google Scholar
|
[30]
|
M. Shao and A. Mao, Multiplicity of solutions to Schrödinger-Poisson system with concave-convex nonlinearities, Appl. Math. Lett., 2018, 83, 212-218. doi: 10.1016/j.aml.2018.04.005
CrossRef Google Scholar
|
[31]
|
Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 2017, 321, 478-486. doi: 10.1016/j.cam.2017.02.036
CrossRef Google Scholar
|
[32]
|
K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016, 261(6), 3061-3106. doi: 10.1016/j.jde.2016.05.022
CrossRef Google Scholar
|
[33]
|
J. Wu, X. Zhang, L. Liu, Y. Wu and Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl., 2018, Article ID 82, 15.
Google Scholar
|
[34]
|
Y. Wang and J. Jiang, Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian, Adv. Difference Equ., 2017, Article ID 337, 19.
Google Scholar
|
[35]
|
M. Willem, Minimax theorems, Boston: Birkhäser, 1996.
Google Scholar
|
[36]
|
J. Xu, Z. Wei and W. Dong, Weak solutions for a fractional p-Laplacian equation with sign-changing potential, Complex Complex Var. Elliptic Equ., 2016, 61(2), 284-296. doi: 10.1080/17476933.2015.1076808
CrossRef Google Scholar
|
[37]
|
L. Yang, Multiplicity of solutions for fractional Schrödinger equations with perturbation, Bound. Value Probl., 2015, Article ID 56, 9.
Google Scholar
|
[38]
|
Y. Ye and C. Tang, Existence and multiplicity of solutions for SchrödingerPoisson equations with sign-changing potential, Calc. Var., 2015, 53(1-2), 383- 411. doi: 10.1007/s00526-014-0753-6
CrossRef Google Scholar
|
[39]
|
M. Zuo, X. Hao, L. Liu and Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017, Article ID 161, 15.
Google Scholar
|
[40]
|
Y. Zou and G. He, On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 2017, 74, 68-73. doi: 10.1016/j.aml.2017.05.011
CrossRef Google Scholar
|
[41]
|
Z. Yue and Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Difference Equ., 2019, Article ID 38, 9.
Google Scholar
|
[42]
|
K. Zhang, On a sign-changing solution for some fractional differential equations, Bound. Value Probl., 2017, Article ID 59, 8.
Google Scholar
|
[43]
|
X. Zhang, J. Wu, L. Liu, Y. Wu and Y. Cui, Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation, Math. Model. Anal., 2018, 23(4), 611-626. doi: 10.3846/mma.2018.037
CrossRef Google Scholar
|
[44]
|
Y. Zhang, Existence results for a coupled system of nonlinear fractional multipoint boundary value problems at resonance, J. Inequal. Appl., 2018, Article ID 198, 17.
Google Scholar
|
[45]
|
X. Zhang, L. Liu, Y. Wu and Y. Zou, Existence and uniqueness of solutions for systems of fractional differential equations with Riemann-Stieltjes integral boundary condition, Adv. Difference Equ., 2018, Article ID 204, 15.
Google Scholar
|
[46]
|
X. Zhang, L. Liu and Y. Zou, Fixed-point theorems for systems of operator equations and their applications to the fractional differential equations, J. Funct. Spaces, 2018, Article ID 7469868, 9.
Google Scholar
|
[47]
|
J. Zhang, João Marcos do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 2016, 16, 15-30.
Google Scholar
|
[48]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017, Article ID 3976469, 4.
Google Scholar
|
[49]
|
X. Zhang, J. Jiang, Y. Wu and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 2019, 90, 229-237. doi: 10.1016/j.aml.2018.11.011
CrossRef Google Scholar
|
[50]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term, Appl. Math. Lett., 2017, 74, 85-93. doi: 10.1016/j.aml.2017.05.010
CrossRef Google Scholar
|
[51]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differential Equ., 2018, 2018(147), 1-15.
Google Scholar
|
[52]
|
X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 2018, 464(2), 1089-1106. doi: 10.1016/j.jmaa.2018.04.040
CrossRef Google Scholar
|