2019 Volume 9 Issue 3
Article Contents

Jiafa Xu, Zhongli Wei, Donal O'Regan, Yujun Cui. INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER-MAXWELL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1165-1182. doi: 10.11948/2156-907X.20190022
Citation: Jiafa Xu, Zhongli Wei, Donal O'Regan, Yujun Cui. INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER-MAXWELL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1165-1182. doi: 10.11948/2156-907X.20190022

INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER-MAXWELL EQUATIONS

  • Author Bio: Email address: jnwzl32@163.com(Z. Wei); Email address: donal.oregan@nuigalway.ie(D. O'Regan); Email address: cyj720201@163.com(Y. Cui)
  • Corresponding author: Email address: xujiafa292@sina.com(J. Xu) 
  • Fund Project: The authors were supported by Talent Project of Chongqing Normal University (No. 02030307-0040), the National Natural Science Foundation of China(No. 11601048), Natural Science Foundation of Chongqing (No. cstc2016jcyjA0181), Natural Science Foundation of Chongqing Normal University (No. 16XYY24)
  • In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schrödinger-Maxwell equations $ \begin{cases} (-\Delta)^\alpha u+\lambda V(x)u+\phi u = f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\\ (-\Delta)^\alpha \phi = K_\alpha u^2, \text{ in } \mathbb R^3, \end{cases} $ where $ \lambda,\mu >0 $ are two parameters, $ \alpha\in (0,1] $, $ K_\alpha = \frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)} $ and $ (-\Delta)^\alpha $ is the fractional Laplacian. Under appropriate assumptions on $ f $ and $ g $ we obtain an existence theorem for this system.
    MSC: 35J20, 35J60
  • 加载中
  • [1] R. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 1983, 27(3), 201-210. doi: 10.1122/1.549724

    CrossRef Google Scholar

    [2] Z. Bai and Y. Zhang, Solvability of fractional three-point boundary value problems with nonlinear growth, Appl. Math. Comput., 2011, 218(5), 1719-1725.

    Google Scholar

    [3] Z. Bai, Y. Chen, H. Lian and S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1175-1187.

    Google Scholar

    [4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonl. Anal., 1998, 11(2), 283-293. doi: 10.12775/TMNA.1998.019

    CrossRef Google Scholar

    [5] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 2016, 51, 48-54. doi: 10.1016/j.aml.2015.07.002

    CrossRef Google Scholar

    [6] B. Cheng and X. Tang, New existence of solutions for the Fractional pLaplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math., 2016, 13(5), 3373-3387. doi: 10.1007/s00009-016-0691-y

    CrossRef Google Scholar

    [7] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 2013, 54, Article ID 061504.

    Google Scholar

    [8] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003, 2003(54), 3413-3442. doi: 10.1155/S0161171203301486

    CrossRef Google Scholar

    [9] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-GordonMaxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 2004, 134(5), 893-906. doi: 10.1017/S030821050000353X

    CrossRef Google Scholar

    [10] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142(6), 1237-1262. doi: 10.1017/S0308210511000746

    CrossRef Google Scholar

    [11] Y. Guo, Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations, Bull. Korean Math. Soc., 2010, 47(1), 81-87. doi: 10.4134/BKMS.2010.47.1.081

    CrossRef Google Scholar

    [12] Y. Guo, Nontrivial periodic solutions of nonlinear functional differential systems with feedback control, Turkish J. Math., 2010, 34(1), 35-44.

    Google Scholar

    [13] X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and pLaplacian operator, Bound. Value Probl., 2017, Article ID 182, 18.

    Google Scholar

    [14] J. He, X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions, Bound. Value Probl., 2018, Article ID 189, 17.

    Google Scholar

    [15] X. He, A. Qian and W. Zou, Existence and concentration of positive solutions for quasi-linear Schrödinger equations with critical growth, Nonlinearity, 2013, 26(12), 3137-3168. doi: 10.1088/0951-7715/26/12/3137

    CrossRef Google Scholar

    [16] H. Hajaiej, X. Yu and Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 2012, 396(2), 569-577. doi: 10.1016/j.jmaa.2012.06.054

    CrossRef Google Scholar

    [17] S. Khoutir and H. Chen, Multiple nontrivial solutions for a nonhomogeneous Schrödinger-Poisson system in3, Electron. J. Qual. Theory Differ. Equ., 2017, 2017(28), 1-17.

    Google Scholar

    [18] E. Lieb and M. Loss, Analysis, Vol. 14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2001.

    Google Scholar

    [19] K. Li, Existence of nontrivial solutions for nonlinear fractional SchrödingerPoisson equations, Appl. Math. Lett., 2017, 72, 1-9. doi: 10.1016/j.aml.2017.03.023

    CrossRef Google Scholar

    [20] L. Li, A. Boucherif and N. Daoudi-Merzagui, Multiple solutions for 4- superlinear Klein-Gordon-Maxwell system without odd nonlinearity, Taiwanese J. Math., 2017, 21(1), 151-165. doi: 10.11650/tjm.21.2017.7680

    CrossRef Google Scholar

    [21] J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 2018, 40, 428-443. doi: 10.1016/j.nonrwa.2017.09.008

    CrossRef Google Scholar

    [22] A. Mao and H. Chang, Kirchhoff type problems in RN with radial potentials and locally Lipschitz functional, Appl. Math. Lett., 2016, 62, 49-54. doi: 10.1016/j.aml.2016.06.014

    CrossRef Google Scholar

    [23] A. Mao and W. Wang, Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in3, J. Math. Anal. Appl., 2018, 459(1), 556-563. doi: 10.1016/j.jmaa.2017.10.020

    CrossRef Google Scholar

    [24] A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett., 2017, 68, 8-12. doi: 10.1016/j.aml.2016.12.014

    CrossRef Google Scholar

    [25] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian inN, Calc. Var., 2015, 54(3), 2785-2806. doi: 10.1007/s00526-015-0883-5

    CrossRef Google Scholar

    [26] A. Qian, Infinitely many sign-changing solutions for a Schrödinger equation, Adv. Difference Equ., 2011, Article ID 39, 6.

    Google Scholar

    [27] A. Qian and C. Li, Infinitely many solutions for a Robin boundary value problem, Int. J. Differ. Equ., 2010, Article ID 548702, 9.

    Google Scholar

    [28] S. Secchi, Concave-convex nonlinearities for some nonlinear fractional equations involving the Bessel operator, Complex Var. Elliptic Equ., 2017, 62(5), 654-669. doi: 10.1080/17476933.2016.1234465

    CrossRef Google Scholar

    [29] Z. Shen and F. Gao, On the existence of solutions for the critical fractional Laplacian equation inN, Abstract Appl. Anal., 2014, Article ID 143741, 10.

    Google Scholar

    [30] M. Shao and A. Mao, Multiplicity of solutions to Schrödinger-Poisson system with concave-convex nonlinearities, Appl. Math. Lett., 2018, 83, 212-218. doi: 10.1016/j.aml.2018.04.005

    CrossRef Google Scholar

    [31] Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solutions for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 2017, 321, 478-486. doi: 10.1016/j.cam.2017.02.036

    CrossRef Google Scholar

    [32] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 2016, 261(6), 3061-3106. doi: 10.1016/j.jde.2016.05.022

    CrossRef Google Scholar

    [33] J. Wu, X. Zhang, L. Liu, Y. Wu and Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl., 2018, Article ID 82, 15.

    Google Scholar

    [34] Y. Wang and J. Jiang, Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian, Adv. Difference Equ., 2017, Article ID 337, 19.

    Google Scholar

    [35] M. Willem, Minimax theorems, Boston: Birkhäser, 1996.

    Google Scholar

    [36] J. Xu, Z. Wei and W. Dong, Weak solutions for a fractional p-Laplacian equation with sign-changing potential, Complex Complex Var. Elliptic Equ., 2016, 61(2), 284-296. doi: 10.1080/17476933.2015.1076808

    CrossRef Google Scholar

    [37] L. Yang, Multiplicity of solutions for fractional Schrödinger equations with perturbation, Bound. Value Probl., 2015, Article ID 56, 9.

    Google Scholar

    [38] Y. Ye and C. Tang, Existence and multiplicity of solutions for SchrödingerPoisson equations with sign-changing potential, Calc. Var., 2015, 53(1-2), 383- 411. doi: 10.1007/s00526-014-0753-6

    CrossRef Google Scholar

    [39] M. Zuo, X. Hao, L. Liu and Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017, Article ID 161, 15.

    Google Scholar

    [40] Y. Zou and G. He, On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 2017, 74, 68-73. doi: 10.1016/j.aml.2017.05.011

    CrossRef Google Scholar

    [41] Z. Yue and Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Difference Equ., 2019, Article ID 38, 9.

    Google Scholar

    [42] K. Zhang, On a sign-changing solution for some fractional differential equations, Bound. Value Probl., 2017, Article ID 59, 8.

    Google Scholar

    [43] X. Zhang, J. Wu, L. Liu, Y. Wu and Y. Cui, Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation, Math. Model. Anal., 2018, 23(4), 611-626. doi: 10.3846/mma.2018.037

    CrossRef Google Scholar

    [44] Y. Zhang, Existence results for a coupled system of nonlinear fractional multipoint boundary value problems at resonance, J. Inequal. Appl., 2018, Article ID 198, 17.

    Google Scholar

    [45] X. Zhang, L. Liu, Y. Wu and Y. Zou, Existence and uniqueness of solutions for systems of fractional differential equations with Riemann-Stieltjes integral boundary condition, Adv. Difference Equ., 2018, Article ID 204, 15.

    Google Scholar

    [46] X. Zhang, L. Liu and Y. Zou, Fixed-point theorems for systems of operator equations and their applications to the fractional differential equations, J. Funct. Spaces, 2018, Article ID 7469868, 9.

    Google Scholar

    [47] J. Zhang, João Marcos do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 2016, 16, 15-30.

    Google Scholar

    [48] X. Zhang, L. Liu, Y. Wu and Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017, Article ID 3976469, 4.

    Google Scholar

    [49] X. Zhang, J. Jiang, Y. Wu and Y. Cui, Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Appl. Math. Lett., 2019, 90, 229-237. doi: 10.1016/j.aml.2018.11.011

    CrossRef Google Scholar

    [50] X. Zhang, L. Liu, Y. Wu and Y. Cui, Entire blow-up solutions for a quasilinear p-Laplacian Schrödinger equation with a non-square diffusion term, Appl. Math. Lett., 2017, 74, 85-93. doi: 10.1016/j.aml.2017.05.010

    CrossRef Google Scholar

    [51] X. Zhang, L. Liu, Y. Wu and Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differential Equ., 2018, 2018(147), 1-15.

    Google Scholar

    [52] X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 2018, 464(2), 1089-1106. doi: 10.1016/j.jmaa.2018.04.040

    CrossRef Google Scholar

Article Metrics

Article views(3380) PDF downloads(776) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint