2019 Volume 9 Issue 3
Article Contents

Chunxiao Guo, Boling Guo. THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FOURTH-ORDER NONLINEAR SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1183-1192. doi: 10.11948/2156-907X.20190095
Citation: Chunxiao Guo, Boling Guo. THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FOURTH-ORDER NONLINEAR SCHRÖDINGER EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1183-1192. doi: 10.11948/2156-907X.20190095

THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FOURTH-ORDER NONLINEAR SCHRÖDINGER EQUATIONS

  • Corresponding author: Email address:guochunxiao1983@sina.com(C. Guo) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No.11771444), the Yue Qi Young Scholar project, China University of Mining and Technology(Beijing) and China Scholarship Council(CSC)
  • In this paper, the problem of a class of multidimensional fourthorder nonlinear Schrödinger equation including the derivatives of the unknown function in the nonlinear term is studied, and the existence of global weak solutions of nonlinear Schrödinger equation is proved by the Galerkin method according to the different values of λ.
    MSC: 35Q40, 35Q55
  • 加载中
  • [1] G. Fibich, B. Ilan, G. Papanicolaou et al., Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 2002, 62, 1437-1462. doi: 10.1137/S0036139901387241

    CrossRef Google Scholar

    [2] B. Guo, Global solution for a class of multidimensional fourth-order nonlinear Schrödinger equations, Northeast Mathematics, 1987, 3, 399-409.

    Google Scholar

    [3] C. Guo, S. Cui, Global existence of solutions for a fourth-order nonlinear Schrödinger equation, Applied Mathematics Letters, 2006, 19, 706-711. doi: 10.1016/j.aml.2005.10.002

    CrossRef Google Scholar

    [4] R. Hirota, Direct Methods in Soliton Theory, Springer, Berlin, 1980.

    Google Scholar

    [5] Z. Huo, Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differ. Equations, 2005, 214, 1-35. doi: 10.1016/j.jde.2004.09.005

    CrossRef Google Scholar

    [6] V. I. Karpman, A. G. Shagalov, Stability of solitons described by nonlinear Schrodinger type equation with higher-order dispersion, Phys. D, 2000, 144, 194-210. doi: 10.1016/S0167-2789(00)00078-6

    CrossRef Google Scholar

    [7] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E., 1996, 53, 1336-1339. doi: 10.1103/PhysRevB.53.1336

    CrossRef Google Scholar

    [8] E. W. Laedke, K. H. Spatschek, L. Stenflo et al., Evolution theorem for a class of perturbed envelope soliton solution, J. Math, Phys, 1983, 24, 2764-2769. doi: 10.1063/1.525675

    CrossRef Google Scholar

    [9] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, New York, Berlin, Heidelberg: Springer-Verlag, 1972.

    Google Scholar

    [10] J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris, 1969.

    Google Scholar

    [11] A. M. Wazwaz, Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities, Mathematical and Computer Modelling, 2006, 43, 802-808. doi: 10.1016/j.mcm.2005.08.010

    CrossRef Google Scholar

Article Metrics

Article views(2187) PDF downloads(728) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint