[1]
|
H. D. Cheng, T. Q. Zhang and F. Wang, Existence and attractiveness of order one periodic solution of a Holling I predator-prey model, Abstract and Applied Analysis, 2012. DOI: 10.1155/2012/126018.
CrossRef Google Scholar
|
[2]
|
O. Diop, A. Moussaoui and A. Sene, positive periodic solution of an augmented predator-prey model with seasonal harvest of prey and migration of predator, Journal of Applied mathematic, 2016, 52(1–2), 417–437.
Google Scholar
|
[3]
|
W. W. Gao, B. X. Dai, Dynamics of a predator-prey model with delay and fear effect, Journal of nonlinear modeling and analysis, 2019, 1(1), 57–72.
Google Scholar
|
[4]
|
J. C. Huang, D. M. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response, Acta Mathematicae Applicatae Sinica, 2004, 20(1), 167–178. doi: 10.1007/s10255-004-0159-x
CrossRef Google Scholar
|
[5]
|
B. Lisena, Global stability of a periodic Holling-tanner predator-prey model, Mathematical Methods in the Applied Sciences, 2018, 41(9), 3270–3281. doi: 10.1002/mma.v41.9
CrossRef Google Scholar
|
[6]
|
B. Liu, Y. J. Zhang, L. Chen, Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control, Chaos, Solitons and Fractals, 2004, 22(1), 123–134. doi: 10.1016/j.chaos.2003.12.060
CrossRef Google Scholar
|
[7]
|
L. L. Wang, W. T. Li, Existence and global stability of positive periodic solutions of a predator-prey system with delays, Applied Mathematics and computation, 2003, 146(1), 167–185. doi: 10.1016/S0096-3003(02)00534-9
CrossRef Google Scholar
|
[8]
|
L. L. Wang, W. T. Li, Periodic solutions and stability for a delayed discrete ratio-dependent predator-prey system with Holling-type functional response, Discrete Dynamics in Nature and Society, 2004, 2, 325–343.
Google Scholar
|
[9]
|
Q. Wang, B. X. Dai, Y. M. Chen, Multiple periodic solutions of an impulsive predator-prey model with Holling-type Ⅳ functional response, Mathematic and computer modelling, 2009, 49(9–10), 1829–1836. doi: 10.1016/j.mcm.2008.09.008
CrossRef Google Scholar
|
[10]
|
R. Xu, M. A. J. Chaplain and F. A. Davidson, Periodic solutions for a predator-prey model with Holling-type functional response and time delays, Applied mathematic and computation, 2005, 161(2), 637–654. doi: 10.1016/j.amc.2003.12.054
CrossRef Google Scholar
|
[11]
|
W. C. Zhao, T. Q. Zhang, Z. B. Chang, X. Z. Meng and Y. L. Liu, Dynamical analysis of SIR epidemic models with distributed delay, Journal of Applied mathematic, 2013. DOI: 10.1155/2013/154387.
CrossRef Google Scholar
|