2019 Volume 9 Issue 4
Article Contents

Xiang Zhu, Wei Ding. GLOBAL STABILITY OF PERIODIC SOLUTIONS OF PREDATOR-PREY SYSTEM WITH HOLLING TYPE Ⅲ FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1606-1615. doi: 10.11948/2156-907X.20190121
Citation: Xiang Zhu, Wei Ding. GLOBAL STABILITY OF PERIODIC SOLUTIONS OF PREDATOR-PREY SYSTEM WITH HOLLING TYPE Ⅲ FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1606-1615. doi: 10.11948/2156-907X.20190121

GLOBAL STABILITY OF PERIODIC SOLUTIONS OF PREDATOR-PREY SYSTEM WITH HOLLING TYPE Ⅲ FUNCTIONAL RESPONSE

  • This paper studied some properties of a predator-prey system with Holling type Ⅲ functional response. Based on Mawhin's Continuation Theorem, some sufficient conditions for the existence of periodic solutions are obtained. Moreover, the global stability of the periodic solution is built with the help of a suitable Lyapunov function.
    MSC: 34C25, 34D23
  • 加载中
  • [1] H. D. Cheng, T. Q. Zhang and F. Wang, Existence and attractiveness of order one periodic solution of a Holling I predator-prey model, Abstract and Applied Analysis, 2012. DOI: 10.1155/2012/126018.

    CrossRef Google Scholar

    [2] O. Diop, A. Moussaoui and A. Sene, positive periodic solution of an augmented predator-prey model with seasonal harvest of prey and migration of predator, Journal of Applied mathematic, 2016, 52(1–2), 417–437.

    Google Scholar

    [3] W. W. Gao, B. X. Dai, Dynamics of a predator-prey model with delay and fear effect, Journal of nonlinear modeling and analysis, 2019, 1(1), 57–72.

    Google Scholar

    [4] J. C. Huang, D. M. Xiao, Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response, Acta Mathematicae Applicatae Sinica, 2004, 20(1), 167–178. doi: 10.1007/s10255-004-0159-x

    CrossRef Google Scholar

    [5] B. Lisena, Global stability of a periodic Holling-tanner predator-prey model, Mathematical Methods in the Applied Sciences, 2018, 41(9), 3270–3281. doi: 10.1002/mma.v41.9

    CrossRef Google Scholar

    [6] B. Liu, Y. J. Zhang, L. Chen, Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control, Chaos, Solitons and Fractals, 2004, 22(1), 123–134. doi: 10.1016/j.chaos.2003.12.060

    CrossRef Google Scholar

    [7] L. L. Wang, W. T. Li, Existence and global stability of positive periodic solutions of a predator-prey system with delays, Applied Mathematics and computation, 2003, 146(1), 167–185. doi: 10.1016/S0096-3003(02)00534-9

    CrossRef Google Scholar

    [8] L. L. Wang, W. T. Li, Periodic solutions and stability for a delayed discrete ratio-dependent predator-prey system with Holling-type functional response, Discrete Dynamics in Nature and Society, 2004, 2, 325–343.

    Google Scholar

    [9] Q. Wang, B. X. Dai, Y. M. Chen, Multiple periodic solutions of an impulsive predator-prey model with Holling-type Ⅳ functional response, Mathematic and computer modelling, 2009, 49(9–10), 1829–1836. doi: 10.1016/j.mcm.2008.09.008

    CrossRef Google Scholar

    [10] R. Xu, M. A. J. Chaplain and F. A. Davidson, Periodic solutions for a predator-prey model with Holling-type functional response and time delays, Applied mathematic and computation, 2005, 161(2), 637–654. doi: 10.1016/j.amc.2003.12.054

    CrossRef Google Scholar

    [11] W. C. Zhao, T. Q. Zhang, Z. B. Chang, X. Z. Meng and Y. L. Liu, Dynamical analysis of SIR epidemic models with distributed delay, Journal of Applied mathematic, 2013. DOI: 10.1155/2013/154387.

    CrossRef Google Scholar

Article Metrics

Article views(2470) PDF downloads(738) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint