Citation: | Pingping Zhang, Weinian Li, Weihong Sheng. HOMEOMORPHISMS RELATED TO THE POLYNOMIAL-LIKE ITERATIVE EQUATION ON $\mathbb{S}^1$[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 71-80. doi: 10.11948/jaac20190001 |
[1] | Ch. Babbage, An essay towards the calculus of functions, Philos. Trans., 1815, 105, 389-423; Ch. Babbage, An essay towards the calculus of functions, Ⅱ, Philos. Trans., 1816, 106, 179-256. |
[2] | K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math., 2001, 61, 1-48. doi: 10.1007/s000100050159 |
[3] | S. Draga and J. Morawiec, Reducing the polynomial-like iterative equations order and a generalized Zoltán Boros' problem, Aequationes Math., 2016, 90, 935-950. doi: 10.1007/s00010-016-0420-4 |
[4] | S. Draga and J. Morawiec, On a Zoltán Boros' problem connected with polynomial-like iterative equations, Nonlinear Analysis: Real World Applications, 2015, 26, 56-63. doi: 10.1016/j.nonrwa.2015.05.001 |
[5] | Jr. M. K. Fort, The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc., 1955, 6, 960-967. doi: 10.1090/S0002-9939-1955-0080911-2 |
[6] | X. Gong and W. Zhang, Convex solutions of the polynomial-like iterative equation in Banach spaces, Publ. Math. Debrecen, 2013, 82, 341-348. doi: 10.5486/PMD.2013.5305 |
[7] | W. Jarczyk, On an equation of linear iteration, Aequationes Math., 1996, 51, 303-310. doi: 10.1007/BF01833285 |
[8] | W. Jarczyk, Babbage equation on the circle, Publ. Math. Debrecen, 2003, 63, 389-400. |
[9] | M. Kuczma, Functional Equations in a Single Variable, Monogr. Math., vol. 46, PWN, Warsaw, 1968. |
[10] | M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl., vol. 32, Cambridge University Press, Cambridge, 1990. |
[11] | M. Kulczycki and J. Tabor, Iterative functional equations in the class of Lipschitz functions, Aequationes Math., 2002, 64, 24-33. doi: 10.1007/s00010-002-8028-2 |
[12] | L. Li and W. Zhang, Construction of usc solutions for a multivalued iterative equation of order n, Aequationes Math., 2012, 62, 203-216. |
[13] | L. Liu and X. Gong, The polynomial-like iterative equation for PM functions, Science China Mathematics, 2017, 60(8), 1503-1514. doi: 10.1007/s11425-016-0319-x |
[14] | L. Liu, W. Jarczyk, L. Li and W. Zhang, Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal., 2012, 75, 286-303. doi: 10.1016/j.na.2011.08.033 |
[15] | L. Liu and J. Matkowski, Iterative functional equations and means, J. Diff. Eqs. Appl., 2018, 24(5), 797-811. doi: 10.1080/10236198.2017.1356294 |
[16] | L. Liu and W. Zhang, Non-monotonic iterative roots extended from characteristic intervals, J. Math. Anal. Appl., 2011, 378, 359-373. doi: 10.1016/j.jmaa.2011.01.037 |
[17] | J. Mai, Conditions of existence for N-th iterative roots of homeomorphisms on the circle, Acta. Math. Sinica, 1987, 30, 280-283. (in Chinese) |
[18] |
M. Malenica, On the solutions of the functional equation $\varphi(x)+\varphi^2 (x)=F(x)$, Mat. Vesnik., 1982, 6(34), 301-305.
$\varphi(x)+\varphi^2 (x)=F(x)$" target="_blank">Google Scholar |
[19] | J. Matkowski and W. Zhang, Method of characteristic for functional equations in polynomial form, Acta Math. Sinica., 1997, 13(3), 421-432. doi: 10.1007/BF02560023 |
[20] |
S. Nabeya, On the functional equation $f(p+qx+rf(x))=a+bx+cf(x)$, Aequationes Math., 1974, 11, 199-211. doi: 10.1007/BF01834919
CrossRef $f(p+qx+rf(x))=a+bx+cf(x)$" target="_blank">Google Scholar |
[21] |
J. Si, Existence of local analytic solutions of the iterative equation $\sum^{n}_{i=1}\lambda_i f^i(z)=F(z)$, Acta Math. Sinica, 1994, 37, 590-600. (in Chinese)
$\sum^{n}_{i=1}\lambda_i f^i(z)=F(z)$" target="_blank">Google Scholar |
[22] | P. Solarz, On some iterative roots on the circle, Publ. Math. Debrecen, 2003, 63, 677-692. |
[23] | W. Song and L. Li, Continuously decreasing solutions for a general iterative equation, Acta Math. Sci., 2018, 38(1), 177-186. doi: 10.1016/S0252-9602(17)30125-X |
[24] | J. Tabor and J. Tabor, On a linear iterative equation, Results Math., 1995, 27, 412-421. doi: 10.1007/BF03322847 |
[25] | J. Tabor and M. Zoldak, Iterative equations in Banach spaces, J. Math. Anal. Appl., 2004, 299, 651-662. doi: 10.1016/j.jmaa.2004.06.011 |
[26] | Gy. Targonski, Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen, 1981. |
[27] | T. Trif, Convex solutions to polynomial-like iterative equations on open intervals, Aequationes Math., 2010, 79, 315-325. doi: 10.1007/s00010-010-0020-7 |
[28] | B. Xu, K. Nikodem and W. Zhang, On a multivalued iterative equation of order n, J. Convex Anal., 2011, 18, 673-686. |
[29] | D. Yang and W. Zhang, Characteristic solutions of polynomial-like iterative equations, Aequationes Math., 2004, 67, 80-105. doi: 10.1007/s00010-003-2708-4 |
[30] | M. C. Zdun, On iterative roots of homeomorphisms of the circle, Bull. Polish Acad. Sci., 2000, 48, 203-213. |
[31] | M. C. Zdun and W. Zhang, A general class of iterative equations on the unit circle, Czechoslovak Mathematical Journal, 2007, 57, 809-829. doi: 10.1007/s10587-007-0077-1 |
[32] |
W. Zhang, Discussion on the differentiable solutions of the iterated equation $\sum^{n}_{i=1}\lambda_if^i(x)=F(x)$, Nonlinear Anal., 1990, 15, 387-398. doi: 10.1016/0362-546X(90)90147-9
CrossRef $\sum^{n}_{i=1}\lambda_if^i(x)=F(x)$" target="_blank">Google Scholar |
[33] | W. Zhang, Solutions of equivariance for a polynomial-like iterative equation, Proc. Roy. Soc. Edinburgh Sect. A, 1990, 130, 1153-1163. |
[34] |
W. Zhang, Stability of the solution of the iterated equation $\sum^{n}_{i=1}\lambda_if^i(x)=F(x)$, Acta math. Sci., 1988, 8, 421-424. doi: 10.1016/S0252-9602(18)30318-7
CrossRef $\sum^{n}_{i=1}\lambda_if^i(x)=F(x)$" target="_blank">Google Scholar |
[35] | Zh. Zhang, Relations between embedding flows and transformation groups of self-mappings on the circle, Acta. Math. Sinica, 1981, 24, 953-957. (in Chinese) |
[36] | P. Zhang and X. Gong, Continuous solutions of 3rd-order iterative equation of linear dependence, Advances in Difference Equations, 2014, 2014:318. doi: 10.1186/1687-1847-2014-318 |
[37] | W. Zhang, K. Nikodem and B. Xu, Convex solutions of polynomial-like iterative equations, J. Math. Anal. Appl., 2006, 315, 29-40. doi: 10.1016/j.jmaa.2005.10.006 |
[38] | J. Zhang, L. Yang and W. Zhang, Some advances on functional equation, Adv. Math., 1995, 24, 385-405. (in Chinese) |
[39] | W. Zhang and W. Zhang, On continuous slutions of n-th order polynomial-like iterative equations, Publ. Math. Debrecen, 2010, 76/1-2, 117-134. |
[40] |
L. Zhao, A theorem concerning the existence and uniqueness of solutions of functional equation $\lambda_1 f(x)+\lambda_2 f^2 (x)=F(x)$, J. Univ. Sci. Technol. China (Special Iss. Math.), 1983, 32, 21-27. (in Chinese)
$\lambda_1 f(x)+\lambda_2 f^2 (x)=F(x)$" target="_blank">Google Scholar |