2020 Volume 10 Issue 1
Article Contents

Rong Liu, Guirong Liu. DYNAMICS OF A STOCHASTIC THREE SPECIES PREY-PREDATOR MODEL WITH INTRAGUILD PREDATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 81-103. doi: 10.11948/jaac20190002
Citation: Rong Liu, Guirong Liu. DYNAMICS OF A STOCHASTIC THREE SPECIES PREY-PREDATOR MODEL WITH INTRAGUILD PREDATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 81-103. doi: 10.11948/jaac20190002

DYNAMICS OF A STOCHASTIC THREE SPECIES PREY-PREDATOR MODEL WITH INTRAGUILD PREDATION

  • Corresponding author: Email address: lgr5791@sxu.edu.cn (G. Liu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11971279, 11471197)
  • Intraguild predation is ubiquitous in many ecological communities. This paper is concerned with a stochastic three species prey-predator model with intraguild predation. The model involves a prey, an intermediate predator which preys on only prey and an omnivorous top predator which preys on both prey and intermediate predator. First, we show the existence of a unique positive global solution of the model. Then we mainly establish the sufficient conditions for the extinction and persistence in the mean of each population. Moreover, we show that the model is stable in distribution. Finally, some numerical simulations are given to illustrate the main results.
    MSC: 34E10, 60H10, 92B05, 92D25
  • 加载中
  • [1] A. Al-Khedhairi, A. A. Elsadany, A. Elsonbaty and A. G. Abdelwahab, Dynamical study of a chaotic predator-prey model with an omnivore, Eur. Phys. J. Plus, 2018, 133(1), 29. doi: 10.1140/epjp/i2018-11864-8

    CrossRef Google Scholar

    [2] J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601–6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [3] E. Bonyah, A. Atangana and A. A. Elsadany, A fractional model for predator-prey with omnivore, Chaos, 2019, 29(1), 013136. doi: 10.1063/1.5079512

    CrossRef Google Scholar

    [4] R. Hall, Intraguild predation in the presence of a shared natural enemy, Ecology, 2011, 92, 352–361. doi: 10.1890/09-2314.1

    CrossRef Google Scholar

    [5] S. Hsu, S. Ruan and T. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 2015, 426, 659–687. doi: 10.1016/j.jmaa.2015.01.035

    CrossRef Google Scholar

    [6] C. Ji, D. Jiang and X. Li, Qualitative analysis of a stochastic ratio-dependent predator-prey system, J. Comput. Appl. Math., 2011, 235, 1326–1341. doi: 10.1016/j.cam.2010.08.021

    CrossRef Google Scholar

    [7] C. Ji, D. Jiang and N. Shi, Analysis of a predator-prey model with modified Leslie-Gowerand Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 2009, 359, 482–498. doi: 10.1016/j.jmaa.2009.05.039

    CrossRef Google Scholar

    [8] G. Jing, M. Li and Y. Zhang, Stability of a stochastic one-predator-two-prey population model with time delays, Commun. Nonlinear Sci. Numer. Simulat., 2017, 53, 65–82. doi: 10.1016/j.cnsns.2017.04.022

    CrossRef Google Scholar

    [9] M. Jovanovi$\acute{c}$ and M. Krsti$\acute{c}$, Extinction in stochastic predator-prey population model with Allee effect on prey, Discret. Contin. Dyn. Syst. Ser. B, 2017, 22, 2651–2667.

    Google Scholar

    [10] H. Liu, T. Li and F. Zhang, A prey-predator model with Holling Ⅱ functional response and the carrying capacity of predator depending on its prey, J. Appl. Anal. Comput., 2018, 8, 1464–1474.

    Google Scholar

    [11] M. Liu and C. Z. Bai, Analysis of a stochastic tri-trophic food-chain model with harvesting, J. Math. Biol., 2016, 73, 597–625. doi: 10.1007/s00285-016-0970-z

    CrossRef Google Scholar

    [12] M. Liu and M. Fan, Stability in distribution of a three-species stochastic cascade predator-prey system with time delays, IMA J. Appl. Math., 2017, 82, 396–423.

    Google Scholar

    [13] M. Liu, H. Qiu and W. K, A remark on a stochastic predator-prey system with time delays, Appl. Math. Lett., 2013, 26, 318–323. doi: 10.1016/j.aml.2012.08.015

    CrossRef Google Scholar

    [14] A. Maiti, M. M. Jana and G. P. Samanta, Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay, Nonlinear Anal. Model. Control, 2007, 12, 383–398. doi: 10.15388/NA.2007.12.3.14700

    CrossRef Google Scholar

    [15] X. Mao, Stochsatic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 2007.

    Google Scholar

    [16] D. Mukherjee, Stability analysis of a stochastic model for prey-predator system with disease in the prey, Nonlinear Anal. Model. Control, 2003, 8, 83–92.

    Google Scholar

    [17] M. Ouyang and X. Li, Permanence and asymptotical behavior of stochastic prey-predator system with Markovian switching, Appl. Math. Comput., 2015, 266, 539–559.

    Google Scholar

    [18] S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 2006, 116, 370–380. doi: 10.1016/j.spa.2005.08.004

    CrossRef Google Scholar

    [19] D. Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.

    Google Scholar

    [20] H. Qiu and W. Deng, Stationary distribution and global asymptotic stability of a three-species stochastic food-chain system, Turk. J. Math., 2017, 41, 1292–1307. doi: 10.3906/mat-1510-52

    CrossRef Google Scholar

    [21] S. Sadhu and C. Kuehn, Stochastic mixed-mode oscillations in a three-species predator-prey model, Chaos, 2018, 28(3), 033606. doi: 10.1063/1.4994830

    CrossRef Google Scholar

    [22] D. Sen, S. Ghorai and M. Banerjee, Complex dynamics of a three species prey-predator model with intraguild predation, Ecol. Complex., 2018, 34, 9–22. doi: 10.1016/j.ecocom.2018.02.002

    CrossRef Google Scholar

    [23] J. Yang and S. Tang, Holling type Ⅱ predator-prey model with nonlinear pulse as state-dependent feedback control, J. Comput. Appl. Math., 2016, 291, 225–241. doi: 10.1016/j.cam.2015.01.017

    CrossRef Google Scholar

    [24] X. Yu, S. Yuan and T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simulat., 2018, 59, 359–374. doi: 10.1016/j.cnsns.2017.11.028

    CrossRef Google Scholar

    [25] T. Zeng, Z. D. Teng, Z. M. Li and J. N. Hu, Stability in the mean of a stochastic three species food chain model with general L$\acute{e}$vy jumps, Chaos Soliton. Fract., 2018, 106, 258–265. doi: 10.1016/j.chaos.2017.10.025

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(3494) PDF downloads(600) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint