2020 Volume 10 Issue 1
Article Contents

Liya Liu, Xiaolong Qin. ON THE STRONG CONVERGENCE OF A PROJECTION-BASED ALGORITHM IN HILBERT SPACES[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 104-117. doi: 10.11948/20190004
Citation: Liya Liu, Xiaolong Qin. ON THE STRONG CONVERGENCE OF A PROJECTION-BASED ALGORITHM IN HILBERT SPACES[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 104-117. doi: 10.11948/20190004

ON THE STRONG CONVERGENCE OF A PROJECTION-BASED ALGORITHM IN HILBERT SPACES

  • In this paper, we introduce a new projection-based algorithm for solving variational inequality problems with a Lipschitz continuous pseudo-monotone mapping in Hilbert spaces. We prove a strong convergence of the generated sequences. The numerical behaviors of the proposed algorithm on test problems are illustrated and compared with previously known algorithms.
    MSC: 49J40, 65K10, 90C33, 47J20
  • 加载中
  • [1] H. Attouch, J. Peypouquet and P. Redont, A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 2014, 24, 232–256. doi: 10.1137/130910294

    CrossRef Google Scholar

    [2] H. Attouch and A. Cabot, Convergence rates of inertial forward-backward algorithms, SIAM J. Optim., 2018, 28, 849–874. doi: 10.1137/17M1114739

    CrossRef Google Scholar

    [3] H. Ansari, F. Babu and J.C. Yao, Regularization of proximal point algorithms in Hadamard manifolds, J. Fixed Point Theory Appl., 2019, 21(1), 25. doi: 10.1007/s11784-019-0658-2

    CrossRef Google Scholar

    [4] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 2004, 14, 773–782. doi: 10.1137/S1052623403427859

    CrossRef Google Scholar

    [5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2009, 2, 183–202. doi: 10.1137/080716542

    CrossRef Google Scholar

    [6] I. Boţ and E.R. Csetnek, A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 2015, 36, 951–963. doi: 10.1080/01630563.2015.1042113

    CrossRef Google Scholar

    [7] I. Boţ and E.R. Csetnek, An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algo., 2016, 71, 519–540. doi: 10.1007/s11075-015-0007-5

    CrossRef Google Scholar

    [8] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Amsterdam. 1976.

    Google Scholar

    [9] Y. Cho, Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 2018, 8, 19–31.

    Google Scholar

    [10] Y. Cho and S.M. Kang, Approximation of common solutions of variational inequalities via strict pseudocontractions, Acta Math. Sci., 2012, 32, 1607–1618. doi: 10.1016/S0252-9602(12)60127-1

    CrossRef Google Scholar

    [11] Y. Cho, W. Li and S.M. Kang, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013, 1, 199.

    Google Scholar

    [12] Y. Cho and S.M. Kang, Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process, Appl. Math. Lett., 2011, 24, 224–228. doi: 10.1016/j.aml.2010.09.008

    CrossRef Google Scholar

    [13] S. Chang, C.F. Wen and J.C. Yao, Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces, Optimization, 2018, 67, 1183–1196. doi: 10.1080/02331934.2018.1470176

    CrossRef Google Scholar

    [14] S. Chang, C.F. Wen and J.C. Yao, Zero point problem of accretive operators in Banach spaces, Bull. Malaysian Math. Sci. Soc. 2019, 42, 105–118. doi: 10.1007/s40840-017-0470-3

    CrossRef Google Scholar

    [15] L.C. Ceng, Q.H. Ansari and J.C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 2012, 64, 633–642. doi: 10.1016/j.camwa.2011.12.074

    CrossRef Google Scholar

    [16] Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 2011, 148, 318–335. doi: 10.1007/s10957-010-9757-3

    CrossRef Google Scholar

    [17] Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 2011, 26, 827–845. doi: 10.1080/10556788.2010.551536

    CrossRef Google Scholar

    [18] W. Cottle and J.C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 1992, 75, 281–295. doi: 10.1007/BF00941468

    CrossRef Google Scholar

    [19] J. Chen, E. Kobis, J.C. Yao, Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints, J. Optim. Theory Appl., 2019, 181, 411-436. doi: 10.1007/s10957-018-1437-8

    CrossRef Google Scholar

    [20] V. Hieu, P.K. Anh and L.D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., 2017, 66, 75–96. doi: 10.1007/s10589-016-9857-6

    CrossRef Google Scholar

    [21] X. Hu and J. Wang, Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network, IEEE Trans. Neural Networks, 2006, 17, 1487–1499. doi: 10.1109/TNN.2006.879774

    CrossRef Google Scholar

    [22] M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 1976, 12, 747–756.

    Google Scholar

    [23] S. Karamardian and S. Scchaible, Seven kinds of monotone maps, J. Optim. Theory Appl., 1990, 66, 37–46. doi: 10.1007/BF00940531

    CrossRef Google Scholar

    [24] L. Liu, A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal. 20 (2019), 471-488.

    Google Scholar

    [25] A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision., 2015, 51, 311–325. doi: 10.1007/s10851-014-0523-2

    CrossRef Google Scholar

    [26] E. Maingé, Strong convergence of projected reflected gradient methods for variational inequalities, Fixed Point Theory, 2018, 19, 659–680. doi: 10.24193/fpt-ro.2018.2.52

    CrossRef Google Scholar

    [27] E. Maingé, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl., 2008, 34, 876–887.

    Google Scholar

    [28] A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 2003, 155, 447–454. doi: 10.1016/S0377-0427(02)00906-8

    CrossRef Google Scholar

    [29] V. Malitsky and V.V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Global Optim., 2015, 61, 193–202. doi: 10.1007/s10898-014-0150-x

    CrossRef Google Scholar

    [30] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 2006, 16, 1230–1241. doi: 10.1137/050624315

    CrossRef Google Scholar

    [31] T. Polyak, Some methods of speeding up the convergence of iteration methods, Comput. Math. Math. Phys., 1964, 4, 1–17.

    Google Scholar

    [32] X. Qin and N.T. An, Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets, Comput. Optim. Appl., 2019, https://doi.org/10.1007/s10589-019-00124-7. doi: 10.1007/s10589-019-00124-7

    CrossRef Google Scholar

    [33] W. Takahashi, C.F. Wen and J.C. Yao, The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 2018, 19, 407–419. doi: 10.24193/fpt-ro.2018.1.32

    CrossRef Google Scholar

    [34] V. Thong and D.V. Hieu, An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 2017, 19, 3029–3051. doi: 10.1007/s11784-017-0464-7

    CrossRef Google Scholar

    [35] X. Zhao, K.F. Ng, C. Li and J.C. Yao, Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim., 2018, 78, 613–641. doi: 10.1007/s00245-017-9417-1

    CrossRef Google Scholar

    [36] A. Voitova, S.V. Denisov and V.V. Semenov, Strongly convergent modification of Korpelevich's method for equilibrium programming problems, J. Comput. Appl. Math., 2011, 104, 10–23.

    Google Scholar

Figures(4)

Article Metrics

Article views(2650) PDF downloads(492) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint