2020 Volume 10 Issue 1
Article Contents

Hui Wang, Shou-Fu Tian, Tian-Tian Zhang, Yi Chen. THE BREATHER WAVE SOLUTIONS, M-LUMP SOLUTIONS AND SEMI-RATIONAL SOLUTIONS TO A (2+1)-DIMENSIONAL GENERALIZED KORTEWEG-DE VRIES EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 118-130. doi: 10.11948/20190011
Citation: Hui Wang, Shou-Fu Tian, Tian-Tian Zhang, Yi Chen. THE BREATHER WAVE SOLUTIONS, M-LUMP SOLUTIONS AND SEMI-RATIONAL SOLUTIONS TO A (2+1)-DIMENSIONAL GENERALIZED KORTEWEG-DE VRIES EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 118-130. doi: 10.11948/20190011

THE BREATHER WAVE SOLUTIONS, M-LUMP SOLUTIONS AND SEMI-RATIONAL SOLUTIONS TO A (2+1)-DIMENSIONAL GENERALIZED KORTEWEG-DE VRIES EQUATION

  • Under investigation in this work is a (2+1)-dimensional generalized Korteweg-de Vries equation, which can be used to describe many nonlinear phenomena in plasma physics. By using the properties of Bell's polynomial, we obtain the bilinear formalism of this equation. The expression of $ N $-soliton solution is established in terms of the Hirota's bilinear method. Based on the resulting $ N $-soliton solutions, we succinctly show its breather wave solutions. Furthermore, with the aid of the corresponding soliton solutions, the $ M $-lump solutions are well presented by taking a long wave limit. Two types of hybrid solutions are also represented in detail. Finally, some graphic analysis are provided in order to better understand the propagation characteristics of the obtained solutions.
    MSC: 35Q51, 35Q53, 35C99
  • 加载中
  • [1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.

    Google Scholar

    [2] M. J. Ablowitz and J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 1978, 19(10), 2180–2186. doi: 10.1063/1.523550

    CrossRef Google Scholar

    [3] G. W. Bluman and S. Kumei, Symmetries and differential equations, Springer-Verlag, New York, 1989.

    Google Scholar

    [4] Y. L. Cao, J. S. He and D. Mihalache, Families of exact solutions of a new extended (2+1)-dimensional Boussinesq equation, Nonlinear Dyn., 2018, 91(4), 2593–2605.

    Google Scholar

    [5] M. J. Dong, S. F. Tian, X. W. Yan and L. Zou, Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq-Burgers equation, Nonlinear Dyn., 2018, 95(1), 273–291.

    Google Scholar

    [6] M. J. Dong, S. F. Tian, X. B. Wang and T. T. Zhang, Lump-type solutions and interaction solutions in the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation, Anal. Math. Phys., 2019, 9(3), 1511–1523. doi: 10.1007/s13324-018-0258-0

    CrossRef Google Scholar

    [7] M. J. Dong, S. F. Tian, X. W. Yan and L. Zou, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 2018, 75(3), 957–964.

    Google Scholar

    [8] L. L. Feng, S. F. Tian and T. T. Zhang, Solitary wave, breather wave and rogue wave solutions of an inhomogeneous fifth-order nonlinear Schrödinger equation from Heisenberg ferromagnetism, Rocky Mountain J. Math., 2019, 49(1), 29–45.

    Google Scholar

    [9] C. H. Gu, H. S. Hu and Z. X. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications, Shanghai Scientific and Technical Publishers, Shanghai, 1999.

    Google Scholar

    [10] D. Guo, S. F. Tian and T. T. Zhang, Integrability, soliton solutions and modulation instability analysis of a (2+ 1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation, Comput. Math. Appl., 2019, 77(3), 770–778.

    Google Scholar

    [11] D. Guo, S. F. Tian, T. T. Zhang and J. Li, Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system, Nonlinear Dyn., 2018, 94(4), 2749–2761. doi: 10.1007/s11071-018-4522-5

    CrossRef Google Scholar

    [12] J. Hietarinta, Hirota's bilinear method and soliton solutions, Phys. AUC, 2005, 15(1), 31–37.

    Google Scholar

    [13] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, 2004.

    Google Scholar

    [14] D. J. Kaup, The lump solutions and the bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22(6), 1176–1181. doi: 10.1063/1.525042

    CrossRef Google Scholar

    [15] J. B. Li and Z. J. Qiao, Explicit soliton solutions of the Kaup-Kupershmidt equation through the dynamical system approach, J. Appl. Anal. Comput., 2011, 1(2), 243–250.

    Google Scholar

    [16] X. Lü and W. X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn., 2016, 85(2), 1217–1222.

    Google Scholar

    [17] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 2015, 379(36), 1975–1978. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [18] W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Modern Phys. B, 2016, 30(28n29), 1640018. doi: 10.1142/S021797921640018X

    CrossRef Google Scholar

    [19] W. X. Ma, Z. Y. Qin and X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dyn., 2016, 84(2), 923–931.

    Google Scholar

    [20] W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differential Equations, 2018, 264(4), 2633–2659. doi: 10.1016/j.jde.2017.10.033

    CrossRef Google Scholar

    [21] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its and V. B. Matveev, Two-dimensional solitons of the kadomtsev-petviashvili equation and their interaction, Phys. Lett. A, 1977, 63(3), 205–206.

    Google Scholar

    [22] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991.

    Google Scholar

    [23] W. Q. Peng, S. F. Tian, L. Zou and T. T. Zhang, Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Nonlinear Dyn., 2018, 93(4), 1841–1851.

    Google Scholar

    [24] W. Q. Peng, S. F. Tian and T. T. Zhang, Breather waves and rational solutions in the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Comput. Math. Appl., 2019, 77(3), 715–723.

    Google Scholar

    [25] W. Q. Peng, S. F. Tian and T. T. Zhang, Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation, EPL, 2018, 123(5), 50005. doi: 10.1209/0295-5075/123/50005

    CrossRef Google Scholar

    [26] W. Q. Peng, S. F. Tian and T. T. Zhang, On the Breather Waves, Rogue Waves and Solitary Waves to a Generalized (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada Equation, Filomat, 2018, 32(14), 4959–4969. doi: 10.2298/FIL1814959P

    CrossRef Google Scholar

    [27] C. Qian, J. G. Rao, Y. B. Liu and J. S. He, Rogue Waves in the Three-Dimensional Kadomtsev-Petviashvili Equation, Chin. Phys. Lett., 2016, 33(11), 110201. doi: 10.1088/0256-307X/33/11/110201

    CrossRef Google Scholar

    [28] C. Y. Qin, S. F. Tian, L. Zou and T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, J. Appl. Anal. Comput., 2018, 8(6), 1727–1746.

    Google Scholar

    [29] C. Y. Qin, S. F. Tian, X. B. Wang, T. T. Zhang and J. Li, Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Comput. Math. Appl., 2018, 75(12), 4221–4231.

    Google Scholar

    [30] C. Y. Qin, S. F. Tian, L. Zou and W. X. Ma, Solitary wave and quasi-periodic wave solutions to a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation, Adv. Appl. Math. Mech., 2018, 10(4), 948–977.

    Google Scholar

    [31] J. G. Rao, Y. Cheng and J. S. He, Rational and Semirational Solutions of the Nonlocal Davey-Stewartson Equations, Stud. Appl. Math., 2017, 139(4), 569–598.

    Google Scholar

    [32] S. Sahoo and S. S. Ray, The new exact solutions of variant types of time fractional coupled schrödinger equations in plasma physics, J. Appl. Anal. Comput., 2017, 7(3), 824–840.

    Google Scholar

    [33] J. Satsuma and M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 1979, 20(7), 1496–1503.

    Google Scholar

    [34] D. R. Solli, C. Ropers, P. Koonath and B. Jalali, Optical rogue waves, Nature, 2007, 450(7172), 1054–1057. doi: 10.1038/nature06402

    CrossRef Google Scholar

    [35] D. R. Solli, C. Ropers and B. Jalali, Active Control of Rogue Waves for Stimulated Supercontinuum Generation, Phys. Rev. Lett., 2008, 101(23), 233902. doi: 10.1103/PhysRevLett.101.233902

    CrossRef Google Scholar

    [36] S. F. Tian, Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval, Commun. Pure Appl. Anal., 2018, 17(3), 923–957.

    Google Scholar

    [37] S. F. Tian, Asymptotic behavior of a weakly dissipative modified two-component Dullin-Gottwald-Holm system, Appl. Math. Lett., 2018, 83, 65–72. doi: 10.1016/j.aml.2018.03.019

    CrossRef Google Scholar

    [38] S. F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method, J. Differential Equations, 2017, 262(1), 506–558.

    Google Scholar

    [39] S. F. Tian, Infinite propagation speed of a weakly dissipative modified two-component Dullin-Gottwald-Holm system, Appl. Math. Lett., 2019, 89, 1-7. doi: 10.1016/j.aml.2018.09.010

    CrossRef Google Scholar

    [40] S. F. Tian and H. Q. Zhang, Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations, J. Math. Anal. Appl., 2010, 371(2), 585–608.

    Google Scholar

    [41] S. F. Tian and H. Q. Zhang, On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A: Math. Theor., 2012, 45(5), 055203. doi: 10.1088/1751-8113/45/5/055203

    CrossRef Google Scholar

    [42] S. F. Tian and H. Q. Zhang, On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids, Stud. Appl. Math., 2014, 132(3), 212–246.

    Google Scholar

    [43] S. F. Tian and T. T. Zhang, Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition, Proc. Amer. Math. Soc., 2018, 146(4), 1713–1729.

    Google Scholar

    [44] D. S. Wang, B. L. Guo and X. L. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differential Equations, 2019, 266(9), 5209–5253. doi: 10.1016/j.jde.2018.10.053

    CrossRef Google Scholar

    [45] D. S. Wang, J. Liu and L. Z. Wang, Non-autonomous matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and harmonic potential, Phys. Lett. A, 2018, 382(12), 799–805. doi: 10.1016/j.physleta.2018.01.014

    CrossRef Google Scholar

    [46] D. S. Wang, Y. R. Shi, W. X. Feng and L. Wen, Dynamical and energetic instabilities of F = 2 spinor Bose-Einstein condensates in an optical lattice, Physica D, 2017, 351, 30–41.

    Google Scholar

    [47] D. S. Wang and J. Liu, Integrability aspects of some two-component KdV systems, Appl. Math. Lett., 2018, 79, 211–219. doi: 10.1016/j.aml.2017.12.018

    CrossRef Google Scholar

    [48] D. S. Wang and X. L. Wang, Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Anal. Real World Appl., 2018, 41, 334–361. doi: 10.1016/j.nonrwa.2017.10.014

    CrossRef Google Scholar

    [49] D. S. Wang, X. G. Li, C. K. Chan and J. Zhou, Double Wronskian solution and soliton properties of the nonisospectral BKP equation, Commun. Theor. Phys., 2016, 65(3), 259–265. doi: 10.1088/0253-6102/65/3/259

    CrossRef Google Scholar

    [50] X. B. Wang, S. F. Tian and T. T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 2018, 146(8), 3353–3365. doi: 10.1090/proc/13765

    CrossRef Google Scholar

    [51] X. B. Wang and S. F. Tian, Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation, Comput. Appl. Math., 2018, 37(5), 6270–6282. doi: 10.1007/s40314-018-0699-y

    CrossRef Google Scholar

    [52] X. B. Wang, S. F. Tian, C. Y. Qin and T. T. Zhang, Characteristics of the breathers, rogue waves and solitary waves in a generalized (2+1)-dimensional Boussinesq equation, EPL, 2016, 115(1), 10002. doi: 10.1209/0295-5075/115/10002

    CrossRef Google Scholar

    [53] H. Wang, S. Tian, T. Zhang and Y. Chen, Lump wave and hybrid solutions of a generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles, Front. Math. China, 2019, 14(3), 631–643.

    Google Scholar

    [54] A. M. Wazwaz and G. Q. Xu, Negative-ordermodified KdV equations: multiple soliton and multiple singular soliton solutions, Math. Methods Appl. Sci., 2016, 39(4), 661–667.

    Google Scholar

    [55] M. J. Xu, S. F. Tian, J. M. Tu, P. L. Ma and T. T. Zhang, On quasiperiodic wave solutions and integrability to a generalized (2+1)-dimensional Korteweg-de Vries equation, Nonlinear Dyn., 2015, 82(4), 2031–2049. doi: 10.1007/s11071-015-2297-5

    CrossRef Google Scholar

    [56] X. W. Yan, S. F. Tian, M. J. Dong, X. B. Wang and T. T. Zhang, Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation, Z. Naturforsch A, 2018, 73(5), 399–405. doi: 10.1515/zna-2017-0436

    CrossRef Google Scholar

    [57] X. W. Yan, S. F. Tian, X. B. Wang and T. T. Zhang, Solitons to rogue waves transition, lump solutions and interaction solutions for the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics, Int. J. Comput. Math., 2019, 96(9), 1839–1848. doi: 10.1080/00207160.2018.1535708

    CrossRef Google Scholar

    [58] J. Y. Yang and W. X. Ma, Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensions, Comput. Math. Appl., 2017, 73(2), 220–225.

    Google Scholar

    [59] J. Y. Yang, W. X. Ma and Z. Y. Qin, Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys., 2018, 8(3), 427–436. doi: 10.1007/s13324-017-0181-9

    CrossRef Google Scholar

    [60] J. P. Yu and Y. L. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dyn., 2017, 87(4), 2755–2763. doi: 10.1007/s11071-016-3225-z

    CrossRef Google Scholar

    [61] Y. Zhang, Y. P. Liu and X. Y. Tang, M-lump and interactive solutions to a (3+1)-dimensional nonlinear system, Nonlinear Dyn., 2018, 93(4), 2533–2541. doi: 10.1007/s11071-018-4340-9

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(3759) PDF downloads(623) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint