2020 Volume 10 Issue 1
Article Contents

Wei Chen, Chun-Lei Tang. INFINITELY MANY SOLUTIONS FOR CRITICAL FRACTIONAL EQUATION WITH SIGN-CHANGING WEIGHT FUNCTION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 131-139. doi: 10.11948/20190017
Citation: Wei Chen, Chun-Lei Tang. INFINITELY MANY SOLUTIONS FOR CRITICAL FRACTIONAL EQUATION WITH SIGN-CHANGING WEIGHT FUNCTION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 131-139. doi: 10.11948/20190017

INFINITELY MANY SOLUTIONS FOR CRITICAL FRACTIONAL EQUATION WITH SIGN-CHANGING WEIGHT FUNCTION

  • In this work, we consider the fractional Schrödinger type equations with critical exponent, concave nonlinearity and sign-changing weight function on $ \mathbb{R}^N $. With the aid of the symmetric Mountain Pass Theorem, we prove this problem has infinitely many small energy solutions.
    MSC: 35A15, 35B33, 35R11
  • 加载中
  • [1] A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge Studies in Advanced Mathematics, 104, Cambridge University Press, Cambridge, 2007.

    Google Scholar

    [2] D. Applebaum, L$\rm\acute{e}$vy processes-from probalility to finance and quantum groups, Notices Amer. Math. Soc., 2004, 51, 1336–1347.

    Google Scholar

    [3] G. Autuori, P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^N$, J. Differ. Equ., 2013, 255(8), 2340–2362. doi: 10.1016/j.jde.2013.06.016

    CrossRef Google Scholar

    [4] B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. inst. Henri Poincaré, 2015, 32(4), 875–900. doi: 10.1016/j.anihpc.2014.04.003

    CrossRef Google Scholar

    [5] C. Brändle, E. Colorado, A.D. Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. R. Soc. Edinb. Sect. A, 2013, 143(1), 39–71. doi: 10.1017/S0308210511000175

    CrossRef Google Scholar

    [6] G. M. Bisci, V.R. dulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.

    Google Scholar

    [7] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functional, Proc. Am. Math. Soc., 1983, 88(3), 486–490. doi: 10.1090/S0002-9939-1983-0699419-3

    CrossRef Google Scholar

    [8] M. Bhakta, D. Mukherjee, Multiplicity results and sign changing solutions of non-local equations with concave–convex nonlinearities, Differ. Integral Equ., 2016, 30(5–6), 387–422.

    Google Scholar

    [9] M. Chu, J.J. Sun, H.M. Suo, Multiplicity of positive solutions for critical fractional equation involving concave-convex nonlinearities and sign-Changing weight functions, Mediterr. J. Math., 2016, 13(6), 4437–4446. doi: 10.1007/s00009-016-0754-0

    CrossRef Google Scholar

    [10] J. Chabrowski, P. Drabek, On positive solutions of nonlinear elliptic equations involving concave and critical nonlinearities, Studia Math., 2002, 151(1), 67–85.

    Google Scholar

    [11] J. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equation, J. Math. Phys., 2013, 54(6), 349–381.

    Google Scholar

    [12] Y. Duan, J. Liu, C.L. Tang, Positive ground state solution for kirchhoff equations with subcritical growth and zero mass, Electron. J. Differential Equations, 2015, 262, 1–14.

    Google Scholar

    [13] S. Goyal, K. Sreenadh, A Nehari manifold for non-local elliptic operator with concave–convex nonlinearities and sign-changing weight function, Proc. Indian Acad. Sci., 2015, 125(4), 545–558.

    Google Scholar

    [14] R. Kajikiya, A critical-point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Analysis, 2005, 225(2), 352–370.

    Google Scholar

    [15] N. Laskin, Fractional Schrödinger equation, Physics, 2002, 66(5), 249–264.

    Google Scholar

    [16] N. Laskin, Fractional quantum mechanics and L$\acute{e}$vy path integrals, Phys. Lett. A, 2000, 268(4–6), 298–305. doi: 10.1016/S0375-9601(00)00201-2

    CrossRef Google Scholar

    [17] S. Liang, J. Zhang, Multiplicity of solutions to the weighted critical quasilinear problems, Pro. Edinb. Math. Soc., 2012, 55(1), 181-195. doi: 10.1017/S0013091509001813

    CrossRef Google Scholar

    [18] D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev space, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [19] Y. Pu, J. Liu, C.L. Tang, Existence of weak solutions for a class of fractional Schrödinger equations with periodic potential, Comput. Math. Appl., 2017, 73(3), 465–482.

    Google Scholar

    [20] S. Secchi, M. Squassina, Soliton dynamics for fractional Schrödinger equations, Appl. Anal., 2014, 93(8), 1702–1729. doi: 10.1080/00036811.2013.844793

    CrossRef Google Scholar

    [21] S. Secchi, Perturbation results for some nonlinear equations involving fractional operators, Differ. Equ. Appl., 2012, 5(2), 221–236.

    Google Scholar

    [22] F. Su, Y.H. Wei, Multiplicity of solutions for non-local elliptic equations driven by fractional Laplacian, Cal. Var. Partial Differ. Equ., 2015, 52(1–2), 95–124. doi: 10.1007/s00526-013-0706-5

    CrossRef Google Scholar

    [23] X. Zhang, B.L. Zhang, Duǎn Repovš, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal., 2016, 142, 48–68. doi: 10.1016/j.na.2016.04.012

    CrossRef Google Scholar

Article Metrics

Article views(2734) PDF downloads(577) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint