[1]
|
N. G. Chegini, A. Salaripanah, R. Mokhtari and D. Isvand, Numerical solution of the regularized long wave equation using nonpolynomial splines, Nonlinear Dyn., 2012, 69, 459-471.
Google Scholar
|
[2]
|
I. Dağ, B. Saka and D. Irk, Application of cubic B-splines for numerical solution of the RLW equation, Applied Mathematics and Computation, 2004, 159, 373-389.
Google Scholar
|
[3]
|
I. Dağ, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, Journal of Computational and Applied Mathematics, 2006, 190, 532-547.
Google Scholar
|
[4]
|
A. Doğan, Numerical solution of RLW equation using linear finite elements within Galerkin's method, Applied Mathematical Modelling, 2002, 26, 771-783.
Google Scholar
|
[5]
|
I. Dağ and M. N. Özer, Approximation of the RLW equation by the least square cubic B-spline finite element method, Applied Mathematical Modelling, 2001, 25, 221-231.
Google Scholar
|
[6]
|
A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Applied Mathematics and Computation, 2006, 174, 833-845.
Google Scholar
|
[7]
|
J. Geiser, Iterative Splitting Methods for Differential Equations, CHAPMAN & HALL/CRC. Numerical Analysis and Scientific Computing, 2011.
Google Scholar
|
[8]
|
H. Holden, K. H. Karlsen, K. A. Lie and N. H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions, European Mathematical Society, 2010.
Google Scholar
|
[9]
|
H. Holden, K. H. Karlsen and N. H. Risebro, Operator splitting methods for generalized Korteweg-De Vries equations, J. Comput. Phys., 1999, 153, 203-222.
Google Scholar
|
[10]
|
H. Holden, C. Lubich and N. H. Risebro, Operator splitting for partial differential equations with Burgers nonlinearity, Math. Comp., 2013, 82, 173-185.
Google Scholar
|
[11]
|
S. L. Islam, S. Haq and A. Ali, A meshfree method for the numerical solution of the RLW equation, Journal of Computational and Applied Mathematics, 2009, 223, 997-1012.
Google Scholar
|
[12]
|
P. C. Jain, Rama Shankar and T. V. Singh, Numerical solution of regularized long-wave equation, Communications in Nmerical Methods in Engineering, 1993, 9, 579-586.
Google Scholar
|
[13]
|
S. Kutluay And A. Esen, A finite difference solution of the regularized long-wave equation, Mathematical Problems in Engineering, 2006. DOI:10.1155/MPE/2006/85743.
Google Scholar
|
[14]
|
L. Mei and Y. Chen, Explicit multistep method for the numerical solution of RLW equation, Applied Mathematics and Computation, 2012, 218, 9547-9554.
Google Scholar
|
[15]
|
R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Computer Physics Communications, 2010, 181, 1266-1274.
Google Scholar
|
[16]
|
O. Oruç, F. Bulut and A. Esen, Numerical solutions of regularized long wave equation By Haar Wavelet Method, Mediterr. J. Math., 2016, 13, 3235-3253.
Google Scholar
|
[17]
|
D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 1966, 25(2), 321-330.
Google Scholar
|
[18]
|
P. M. Prenter, Splines and Variational Methods, Wiley-Interscience, New York, 1975.
Google Scholar
|
[19]
|
K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Applied Mathematics and Computation, 2005, 167, 1101-1118.
Google Scholar
|
[20]
|
B. Saka, A. Şahin and I. Dağ, B-Spline collocation algorithms for numerical solution of the RLW equation, Wiley Online Library, 2009. DOI:10.1002/num.20540.
Google Scholar
|
[21]
|
B. Saka and I. Dağ, A numerical solution of the RLWequation by Galerkin method using quartic B-splines, Communications In Numerical Methods In Engineering, 2008, 24, 1339-1361.
Google Scholar
|
[22]
|
B. Saka, I. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, International Journal of Computer Mathematics, 2004, 81(6), 727-739.
Google Scholar
|
[23]
|
B. Saka and I. Dağ, Quartic B-Spline collocation algorithms for numerical solution of the RLW equation, Wiley InterScience, 2007. DOI:10.1002/num.2020.
Google Scholar
|
[24]
|
G. Strang, On the contstruction and comparison of difference schemes, SIAM J. Numer. Anal., 1968, 5(3), 506-517.
Google Scholar
|
[25]
|
B. Sportisse, An analysis of operator splitting techniques in the stiff case, Journal of Computational Physics, 2000, 161, 140-168.
Google Scholar
|
[26]
|
M. Seydaoğlu, U. Erdoğan and T. Öziş, Numerical solution of Burgers' equation with high order splitting methods, Journal of Computational and Applied Mathematics, 2016, 291, 410-421.
Google Scholar
|
[27]
|
S. I. Zaki, Solitary waves of the splitted RLW equation, Computer Physics Communications, 2001, 138, 80-91.
Google Scholar
|