[1]
|
M. Aassila and A. Benaissa, Existence globale et comportement asymptotique des solutions des equations de Kirchhoff moyennement degenerees avce un terme nonlinear dissipatif, Funkc. Ekvacioj, 2000, 43, 309-333.
Google Scholar
|
[2]
|
R. A. Admas, Sobolev Space, New York: Academac press, 1975.
Google Scholar
|
[3]
|
J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 1974, 80, 1276-1278. doi: 10.1090/S0002-9904-1974-13714-6
CrossRef Google Scholar
|
[4]
|
J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 1976, 25, 895-917. doi: 10.1512/iumj.1976.25.25071
CrossRef Google Scholar
|
[5]
|
J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 1977, 26, 199-222. doi: 10.1512/iumj.1977.26.26015
CrossRef Google Scholar
|
[6]
|
S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differ. Eq., 2004, 88, 1-10.
Google Scholar
|
[7]
|
F. A. Boussouira, P. Cannarsa and D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 2008, 254, 1342-1372. doi: 10.1016/j.jfa.2007.09.012
CrossRef Google Scholar
|
[8]
|
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differ. Eq., 2002, 44, 1-14.
Google Scholar
|
[9]
|
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for viscoelastic probiems, Differ. Integral Equ., 2002, 15, 731-748.
Google Scholar
|
[10]
|
M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 2003, 42, 1310-1324. doi: 10.1137/S0363012902408010
CrossRef Google Scholar
|
[11]
|
R. M. Christensen, Theory of viscoelasticity, Academic Press, New York, 1971.
Google Scholar
|
[12]
|
L. C. Evans, Partial Differential Equations(Second Edition), Rhode Island: American Mathematical Society Providence, 2010.
Google Scholar
|
[13]
|
C. L. Frota and J. A. Goldstein, Some nonlinear wave equations with acoustic boundary conditions, J. Differ. Equations, 2000, 164, 92-109. doi: 10.1006/jdeq.1999.3743
CrossRef Google Scholar
|
[14]
|
Q. Gao, F. Li and Y. Wang, Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Eur. J. Math., 2011, 9(3), 686-698. doi: 10.2478/s11533-010-0096-2
CrossRef Google Scholar
|
[15]
|
G. C. Gorain, Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation, Appl. Math. Comp., 2006, 177, 235-242. doi: 10.1016/j.amc.2005.11.003
CrossRef Google Scholar
|
[16]
|
P. J. Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differ. Equations, 2012, 252, 4898-4941.
Google Scholar
|
[17]
|
J. Jeong, J. Park, and Y. H.Kang, Global nonexistence of solutions for a nonlinear wave equation with time delay and acoustic boundary conditions, Comput. Math. Appl., 2018, 76, 661-671. doi: 10.1016/j.camwa.2018.05.006
CrossRef Google Scholar
|
[18]
|
F. Li, Global existence and uniqueness of weak solution to nonlinear viscoelastic full Marguerre-von Kármán shallow shell equations, Acta. Math. Sini., 2009, 25, 2133-2156. doi: 10.1007/s10114-009-7048-4
CrossRef Google Scholar
|
[19]
|
F. Li, Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Kármán shallow shell system, J. Differ. Equations, 2010, 249, 1241-1257. doi: 10.1016/j.jde.2010.05.005
CrossRef Google Scholar
|
[20]
|
F. Li and Y. Bai, Uniform decay rates for nonlinear viscoelastic Marguerre-von Kármán equations, J. Math. Anal. Appl. 2009, 351, 522-535. doi: 10.1016/j.jmaa.2008.10.045
CrossRef Google Scholar
|
[21]
|
F. Li and Y. Bao, Uniform Stability of the Solution for a Memory-Type Elasticity System with Nonhomogeneous Boundary Control Condition, J. Dyn. Control. Syst., 2017, 23, 301-315. doi: 10.1007/s10883-016-9320-0
CrossRef Google Scholar
|
[22]
|
F. Li, and G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Comput. 2018, 8(1), 390-401.
Google Scholar
|
[23]
|
F. Li and Q. Gao, Blow-up of solution for a nonlinear Petrovsky type equation with memory, Appl. Math. Comput., 2016, 274, 383-392.
Google Scholar
|
[24]
|
F. Li and F. Hu, Weighted integral inequality and applications in general energy decay estimate for a variable density wave equation with memory, Bound. Value. Probl. 2018, 2018:164.
Google Scholar
|
[25]
|
F. Li and Z. Jia, Global existence and stability of a class of nonlinear evolution equations with hereditary memory and variable density, Bound. Value. Probl. 2019, 2019:37.
Google Scholar
|
[26]
|
F. Li and J. Li, Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions, J. Math. Anal. Appl., 2012, 385, 1005-1014. doi: 10.1016/j.jmaa.2011.07.018
CrossRef Google Scholar
|
[27]
|
F. Li and J Li, Global existence and blow-up phenomena for p-Laplacian heat equation with inhomogeneous Neumann boundary conditions, Bound. Value Probl. 2014, 2014:219. doi: 10.1186/s13661-014-0219-y
CrossRef Google Scholar
|
[28]
|
F. Li, Z. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal.: Real World Applications, 2011, 12, 1770-1784.
Google Scholar
|
[29]
|
F. Li and C. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Anal., 2011, 74, 3468-3477. doi: 10.1016/j.na.2011.02.033
CrossRef Google Scholar
|
[30]
|
F. Li and S. Xi, Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions I, Mathematical Notes, Accepted.
Google Scholar
|
[31]
|
K. Nishihara and Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkc. Ekvacioj, 1990, 33, 151-159.
Google Scholar
|
[32]
|
K. Ono, Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differ. Equations, 1997, 137, 273-301. doi: 10.1006/jdeq.1997.3263
CrossRef Google Scholar
|
[33]
|
K. Ono and K. Nishihara, On a nonlinear degenerate integro-differential equation of hyperbolic type with a strong dissipation, Adv. Math. Seciencesn and Applications, 1995, 5, 457-476.
Google Scholar
|
[34]
|
J. Y. Park and S. H. Park, Decay rate estimates for wave equations of memory type with acoustic boundary conditions, Nonlinear Anal. 74 (2011) 993-998. doi: 10.1016/j.na.2010.09.057
CrossRef Google Scholar
|
[35]
|
J. Y. Park and J. J. Bae and Pusan, On the existence of solutions for some nondegenerate nonlinear wave equations of kirchhoff type, Czechoslovak Mathematical Journal, 2002, 52(127), 781-795.
Google Scholar
|
[36]
|
S. T. Wu and L. Y. Tsai, Blow-up of solutions for some non-linear wave equations of Kirchhoff-type with some dissipation, Nonlinear Anal., 2006, 65, 243-264. doi: 10.1016/j.na.2004.11.023
CrossRef Google Scholar
|
[37]
|
S. T. Wu, Exponential energy decay of solutions for an integro-differential equation with strong damping, J. Math. Anal. Appl., 2010, 364, 609-617. doi: 10.1016/j.jmaa.2009.11.046
CrossRef Google Scholar
|
[38]
|
S. Xi and S. Zhu, Blow-Up Criterion for the 3D Non-resistive Compressible Magnetohydrodynamic Equations, J. Dyn. Diff. Equat., 2019, 1-22.
Google Scholar
|
[39]
|
B. Yamna and B. Benyattou, Polynomial decay and blow up of solutions for variable coefficients viscoelastic wave equation with acoustic boundary conditions, Acta. Math. Sini., 2016, 32(2), 153-174. doi: 10.1007/s10114-016-5093-3
CrossRef Google Scholar
|
[40]
|
Y. J. Ye, On the exponential decay of solutions for some Kirchhoff-type modelling equations with strong dissipation, Appl. Math., 2010, 1, 529-533. doi: 10.4236/am.2010.16070
CrossRef Google Scholar
|