2020 Volume 10 Issue 3
Article Contents

Peng Wang, Chengde Lin, Xiaobo Yang, Shengwu Xiong. LOW-RANK AND SPARSE MATRIX RECOVERY FROM NOISY OBSERVATIONS VIA 3-BLOCK ADMM ALGORITHM[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1024-1037. doi: 10.11948/20190182
Citation: Peng Wang, Chengde Lin, Xiaobo Yang, Shengwu Xiong. LOW-RANK AND SPARSE MATRIX RECOVERY FROM NOISY OBSERVATIONS VIA 3-BLOCK ADMM ALGORITHM[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1024-1037. doi: 10.11948/20190182

LOW-RANK AND SPARSE MATRIX RECOVERY FROM NOISY OBSERVATIONS VIA 3-BLOCK ADMM ALGORITHM

  • Recovering low-rank and sparse matrix from a given matrix arises in many applications, such as image processing, video background substraction, and so on. The 3-block alternating direction method of multipliers (ADMM) has been applied successfully to solve convex problems with 3-block variables. However, the existing sufficient conditions to guarantee the convergence of the 3-block ADMM usually require the penalty parameter $ \gamma $ to satisfy a certain bound, which may affect the performance of solving the large scale problem in practice. In this paper, we propose the 3-block ADMM to recover low-rank and sparse matrix from noisy observations. In theory, we prove that the 3-block ADMM is convergent when the penalty parameters satisfy a certain condition and the objective function value sequences generated by 3-block ADMM converge to the optimal value. Numerical experiments verify that proposed method can achieve higher performance than existing methods in terms of both efficiency and accuracy.
    MSC: 49, 04
  • 加载中
  • [1] S. Boyd, N. Parikh, E. Chu et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends ® in Machine learning, 2011, 3(1), 1–122.

    Google Scholar

    [2] J.-F. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 2010, 20(4), 1956–1982. doi: 10.1137/080738970

    CrossRef Google Scholar

    [3] E. J. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM (JACM), 2011, 58(3), 11.

    Google Scholar

    [4] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo and A. S. Willsky, Rank-sparsity incoherence for matrix decomposition, SIAM Journal on Optimization, 2011, 21(2), 572–596.

    Google Scholar

    [5] R. Chartrand, Nonconvex splitting for regularized low-rank+ sparse decomposition, IEEE Transactions on Signal Processing, 2012, 60(11), 5810–5819. doi: 10.1109/TSP.2012.2208955

    CrossRef Google Scholar

    [6] C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of ADMM for multiblock convex minimization problems is not necessarily convergent, Mathematical Programming, 2016, 155(1-2), 57–79. doi: 10.1007/s10107-014-0826-5

    CrossRef Google Scholar

    [7] J. Eckstein and D. P. Bertsekas, On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 1992, 55(1-3), 293–318. doi: 10.1007/BF01581204

    CrossRef Google Scholar

    [8] M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Doctoral dissertation, Stanford University, 2002.

    Google Scholar

    [9] D. Han and X. Yuan, A note on the alternating direction method of multipliers, Journal of Optimization Theory and Applications, 2012, 155(1), 227–238.

    Google Scholar

    [10] B. He and X. Yuan, On the O(1/n) convergence rate of the douglas–rachford alternating direction method, SIAM Journal on Numerical Analysis, 2012, 50(2), 700–709.

    Google Scholar

    [11] Y. Hu, X. Liu and M. Jacob, A generalized structured low-rank matrix completion algorithm for MR image recovery, IEEE Transactions on Medical Imaging, 2019, 38(8), 1841–1851. doi: 10.1109/TMI.2018.2886290

    CrossRef Google Scholar

    [12] S. Javed, A. Mahmood, T. Bouwmans and S. K. Jung, Spatiotemporal lowrank modeling for complex scene background initialization, IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6), 1315–1329. doi: 10.1109/TCSVT.2016.2632302

    CrossRef Google Scholar

    [13] H. Ji, S. Huang, Z. Shen and Y. Xu, Robust video restoration by joint sparse and low rank matrix approximation, SIAM Journal on Imaging Sciences, 2011, 4(4), 1122–1142. doi: 10.1137/100817206

    CrossRef Google Scholar

    [14] M. Li, D. Sun and K.-C. Toh, A convergent 3-block semi-proximal admm for convex minimization problems with one strongly convex block, Asia-Pacific Journal of Operational Research, 2015, 32(04), 1550024. doi: 10.1142/S0217595915500244

    CrossRef Google Scholar

    [15] T. Lin, S. Ma and S. Zhang, Global convergence of unmodified 3-block admm for a class of convex minimization problems, Journal of Scientific Computing, 2018, 76(1), 69–88. doi: 10.1007/s10915-017-0612-7

    CrossRef Google Scholar

    [16] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 1979, 16(6), 964–979.

    Google Scholar

    [17] R. D. Monteiro and B. F. Svaiter, Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers, SIAM Journal on Optimization, 2013, 23(1), 475–507.

    Google Scholar

    [18] M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 2011, 21(1), 57–81.

    Google Scholar

    [19] J. J. Wang and W. Song, An algorithm twisted from generalized admm for multi-block separable convex minimization models, Journal of Computational and Applied Mathematics, 2017, 309, 342–358. doi: 10.1016/j.cam.2016.02.001

    CrossRef Google Scholar

    [20] J. Wright, A. Y. Yang, A. Ganesh et al., Robust face recognition via sparse representation, IEEE transactions on pattern analysis and machine intelligence, 2009, 31(2), 210–227. doi: 10.1109/TPAMI.2008.79

    CrossRef Google Scholar

    [21] S. Yang, L. Zhang, L. He and Y. Wen, Sparse low-rank component-based representation for face recognition with low-quality images, IEEE Transactions on Information Forensics and Security, 2019, 14(1), 251–261. doi: 10.1109/TIFS.2018.2849883

    CrossRef Google Scholar

    [22] X. Yuan and J. Yang, Sparse and low rank matrix decomposition via alternating direction method, Pacific Journal of Optimization, 2013, 9(1), 167.

    Google Scholar

    [23] Z. Zhou, X. Li, J. Wright et al., Stable principal component pursuit, in 2010 IEEE international symposium on information theory, IEEE, 2010, 1518–1522.https://www.researchgate.net/publication/224157727_Stable_Principal_Component_Pursuit

    Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(2059) PDF downloads(352) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint