2020 Volume 10 Issue 3
Article Contents

Benzhi Cai, Zhenli Wang, Lihua Zhang, Hanze Liu. LUMP SOLUTIONS TO THE GENERALIZED (2+1)-DIMENSIONAL B-TYPE KADOMTSEV-PETVIASHVILI EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1038-1046. doi: 10.11948/20190183
Citation: Benzhi Cai, Zhenli Wang, Lihua Zhang, Hanze Liu. LUMP SOLUTIONS TO THE GENERALIZED (2+1)-DIMENSIONAL B-TYPE KADOMTSEV-PETVIASHVILI EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1038-1046. doi: 10.11948/20190183

LUMP SOLUTIONS TO THE GENERALIZED (2+1)-DIMENSIONAL B-TYPE KADOMTSEV-PETVIASHVILI EQUATION

  • Corresponding author: Email address:zzlh100@163.com(L. Zhang) 
  • Fund Project: The authors were supported by Natural Science Foundation of Shandong Province (ZR2017LA012), Science and Technology Program of Colleges and Universities in Shandong (J17KA156), and National Natural Science Foundation of China (11501082)
  • Through symbolic computation with Maple, the $ (2+1)- $dimensional B-type Kadomtsev-Petviashvili(BKP) equation is considered. The generalized bilinear form not the Hirota bilinear method is the starting point in the computation process in this paper. The resulting lump solutions contain six free parameters, four of which satisfy two determinant conditions to guarantee the analyticity and rational localization of the solutions, while the others are arbitrary. Finally, the dynamic properties of these solutions are shown in figures by choosing the values of the parameters.
    MSC: 35Q51, 37K10, 37K40
  • 加载中
  • [1] M. J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.

    Google Scholar

    [2] P. J. Caudrey, R. K. Dodd and J. D. Gibbon, A new hierarchy of Korteweg-de Vries equations, A Math. Phys. Eng. Sci., 1976, 351(1666), 407-422.

    Google Scholar

    [3] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, KP Hierarchies of Orthogonal and Symplectic Type Transformation Groups for Soliton Equations VI, Journal of the Physical Society of Japan, 1981, 50(11), 3813-3818. doi: 10.1143/JPSJ.50.3813

    CrossRef Google Scholar

    [4] C. S. Gardner, J. M. Greene, M. D. Kruskal and R.M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 1967, 19, 1095-1097. doi: 10.1103/PhysRevLett.19.1095

    CrossRef Google Scholar

    [5] C. Gilson, F. Lambert and J. Nimmo, On the Combinatorics of the Hirota D-Operators, Proceedings of the Royal Society A, 1996, 452, 223-234. doi: 10.1098/rspa.1996.0013

    CrossRef Google Scholar

    [6] D. Guo, S. Tian and T. Zhang, Integrability, soliton solutions and modulation instability analysis of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation, Computers & Mathematics with Applications, 2019, 77(3), 770-778.

    Google Scholar

    [7] R. Hirota, Exact solutions of the Korteweg-de Vries Equation for multiple collisions of solitons, Phys. Rev. Lett., 1971, 27, 1192-1194. doi: 10.1103/PhysRevLett.27.1192

    CrossRef Google Scholar

    [8] R. S. Johnson and S. Thompson, A solution of the inverse scattering problem for the Kadomtsev-Petviashvili equation by the method of separation of variables, Phys. Lett. A, 66(1978), 279-281. doi: 10.1016/0375-9601(78)90236-0

    CrossRef Google Scholar

    [9] M. Jimbo and T. Miwa, Solitons and infinite-dimensional Lie algebras, Publ. RIMS Kyoto Univ., 1983, 19(3), 943-1001.

    Google Scholar

    [10] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 1970, 15.

    Google Scholar

    [11] D. J. Kaup, The lump solutions and the Bäklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22, 1176. doi: 10.1063/1.525042

    CrossRef Google Scholar

    [12] H. Liu, Z. Wang, X. Xin and X. Liu, Symmetries, Symmetry Reductions and Exact Solutions to the Generalized Nonlinear Fractional Wave Equations, Communications in Theoretical Physics, 2018, 7.

    Google Scholar

    [13] W. Ma, Generalized bilinear differential equations, Studies in Nonlinear Sciences, 2011, 2, 140-144.

    Google Scholar

    [14] W. Ma, Lump solutions to the Kadomtsev-Petviashviliequation, Phys. Lett.A, 2015, 379, 1975-1978. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [15] W. Ma, Bell polynomials and linear superposition principle, Journal of physics: Conference series, 2013, 411, 012021. doi: 10.1088/1742-6596/411/1/012021

    CrossRef Google Scholar

    [16] W. Ma, Z. Qin and X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dyn., 2016, 84, 923-931. doi: 10.1007/s11071-015-2539-6

    CrossRef Google Scholar

    [17] A. A. Minzoni and N. F. Smyth, Evolution of lump solutions for the KP equation, Wave Motion, 1996, 24, 291-305. doi: 10.1016/S0165-2125(96)00023-6

    CrossRef Google Scholar

    [18] S. Novikov, S.V. Manakov, L.P. Pitaevskii and V. E. Zakharov, Theory of Solitons-the Inverse Scattering Method, Consultants Bureau, New York, 1984.

    Google Scholar

    [19] W. Peng, S. Tian and T. Zhang, Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Physics Letters A, 2018, 382(38), 2701-2708. doi: 10.1016/j.physleta.2018.08.002

    CrossRef Google Scholar

    [20] W. Peng, S. Tian and T. Zhang, Dynamics of the soliton waves, breather waves, and rogue waves to the cylindrical Kadomtsev-Petviashvili equation in pair-ionšCelectron plasma, Phys. Fluid., 2019, 31(10), 102107. doi: 10.1063/1.5116231

    CrossRef Google Scholar

    [21] W. Peng, S. Tian, X. Wang and T. Zhang, Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations, Journal of Geometry and Physics, 2019, 146, 103508. doi: 10.1016/j.geomphys.2019.103508

    CrossRef Google Scholar

    [22] W. Peng, S. Tian and T. Zhang, Breather waves, high-order rogue waves and their dynamics in the coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, EPL (Europhysics Letters), 2019, 127(5), 50005. doi: 10.1209/0295-5075/127/50005

    CrossRef Google Scholar

    [23] W. Peng, S. Tian and T. Zhang, Breather waves and rational solutions in the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Computers & Mathematics with Applications, 2019, 77(3), 715-723.

    Google Scholar

    [24] C. Qin, S. Tian, X. Wang, T. Zhang and J. L, Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Computers & Mathematics with Applications, 2018, 75(12), 4221-4231.

    Google Scholar

    [25] K. Sawada and T. Kotera, A Method for Finding N-Soliton Solutions of the KdV Equation and KdV-Like Equation, Progress of theoretical physics, 1974, 51(5), 1355-1367. doi: 10.1143/PTP.51.1355

    CrossRef Google Scholar

    [26] U.K. Samanta, A. Saha and P. Chatterjee, Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron, Physics of Plasmas, 2013, 20, 022111. doi: 10.1063/1.4791660

    CrossRef Google Scholar

    [27] A. Saha, N. Pal and P. Chatterjee, Bifurcation and quasiperiodic behaviors of ion acoustic waves in magnetoplasmas with nonthermal electrons featuring tsallis distribution, Braz. J. Phys., 2015, 45, 325-333. doi: 10.1007/s13538-015-0315-1

    CrossRef Google Scholar

    [28] J. Satsuma and M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 1979, 20, 1496-1503. doi: 10.1063/1.524208

    CrossRef Google Scholar

    [29] X. Xin, H. Liu and L. Zhang, High order nonlocal symmetries and exact interaction solutions of the variable coefficient KdV equation, Applied Mathematics Letters, 2019, 88, 132-140. doi: 10.1016/j.aml.2018.08.023

    CrossRef Google Scholar

    [30] X. Xin, L. Zhang, R. Xia and H. Liu, Nonlocal symmetries and exact solutions of the (2+1)-dimensional generalized variable coefficient shallow water wave equation, Applied Mathematics Letters, 2019, 94, 112-119. doi: 10.1016/j.aml.2019.02.028

    CrossRef Google Scholar

    [31] X. Xin, Y. Liu and X. Liu, Nonlocal symmetries, exact solutions and conservation laws of the coupled Hirota equations, Applied Mathematics Letters, 2016, 55, 63-71. doi: 10.1016/j.aml.2015.11.009

    CrossRef Google Scholar

    [32] X. Yan, S. Tian, M. Dong and T. Zhang, Rogue Waves and Their Dynamics on Bright-Dark Soliton Background of the Coupled Higher Order Nonlinear Schrödinger Equation, J. Phys. Soc. Japan, 2019, 88(7), 074004. doi: 10.7566/JPSJ.88.074004

    CrossRef Google Scholar

    [33] J. Yu and Y. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dynam., 2017, 87, 2755-2763. doi: 10.1007/s11071-016-3225-z

    CrossRef Google Scholar

    [34] X. Yan, S. Tian, M. Dong and L. Z, Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dynamics, 2018, 92(2), 709-720. doi: 10.1007/s11071-018-4085-5

    CrossRef Google Scholar

    [35] H. Zhangn and W. Ma, Lump solutions to the (2+1)-dimensional Sawada-Kotera equation, Nonlinear Dynam., 2017, 87, 2305-2310.

    Google Scholar

    [36] V.E. Zakharov, Shock waves propagated on solitons on the surface of a fluid, Radiophys & Quantum Electronics, 1986, 29, 813-817.

    Google Scholar

    [37] J. Zhang and W. Ma, Mixed lump-Ckink solutions to the BKP equation, Comput. Math. Appl, 2017, 74, 591-596. doi: 10.1016/j.camwa.2017.05.010

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(2205) PDF downloads(394) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint