[1]
|
P. F. Antonietti, M. Sarti, M. Verani and L. T. Zikatanov, A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems, J. Sci. Comput., 2017, 70(2), 608-630. doi: 10.1007/s10915-016-0259-9
CrossRef Google Scholar
|
[2]
|
R. Arnold, Fourier analysis of a robust multigrid method for convectiondiffusion equations, Numer. Math., 1995, 71(3), 365-397. doi: 10.1007/s002110050150
CrossRef Google Scholar
|
[3]
|
Z. Bai, Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, Numer. Linear Algebra Appl., 2018, 25(4), e2116. doi: 10.1002/nla.2116
CrossRef Google Scholar
|
[4]
|
Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric linear systems, Comput., 2010, 87(3-4), 93-111. doi: 10.1007/s00607-010-0077-0
CrossRef Google Scholar
|
[5]
|
Z. Bai and G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 2007, 27(1), 1-23. doi: 10.1093/imanum/drl017
CrossRef Google Scholar
|
[6]
|
Z. Bai, G. H. Golub and C. Li, Optimal parameter in Hermitian and skewHermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 2006, 28(2), 583-603. doi: 10.1137/050623644
CrossRef Google Scholar
|
[7]
|
Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 2003, 24(3), 603-626. doi: 10.1137/S0895479801395458
CrossRef Google Scholar
|
[8]
|
X. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer. Math., 1991, 60(1), 41-61. doi: 10.1007/BF01385713
CrossRef Google Scholar
|
[9]
|
X. Cai, Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput., 1994, 15(3), 587-603. doi: 10.1137/0915039
CrossRef Google Scholar
|
[10]
|
X. Cai and O. B. Widlund, Domain decomposition algorithms for indefinite elliptic problems, SIAM J. Sci. Statist. Comput., 1992, 13(1), 243-258. doi: 10.1137/0913013
CrossRef Google Scholar
|
[11]
|
J. Chen and X. Xu, Uniform convergence and Schwarz method for the mortar element method for non-selfadjoint and indefinite problems, Appl. Math. Comput., 2003, 136(2-3), 517-533.
Google Scholar
|
[12]
|
M. Dryja, An additive Schwarz algorithm for two- and three-dimensional finite element elliptic problems, Domain decomposition methods (Los Angeles, CA, 1988), 168-172, SIAM Philadelphia, PA, 1989.
Google Scholar
|
[13]
|
M. Dryja, M. V. Sarkis and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math., 1996, 72(3), 313-348. doi: 10.1007/s002110050172
CrossRef Google Scholar
|
[14]
|
M. Dryja and O. B. Widlund, Some domain decomposition algorithms for elliptic problems, Iterative methods for large linear systems (Austin, TX, 1988), 273-291, Academic Press, Boston, MA, 1990.
Google Scholar
|
[15]
|
M. Dryja and O. B. Widlund, Towards a unified theory of domain decomposition algorithms for elliptic problems, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), 3-21, SIAM, Philadelphia, PA, 1990.
Google Scholar
|
[16]
|
M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap, Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992). SIAM J. Sci. Comput., 1994, 15(3), 604-620. doi: 10.1137/0915040
CrossRef Google Scholar
|
[17]
|
S. C. Eisenstat, H. C. Elman and M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 1983, 20(2), 345-357. doi: 10.1137/0720023
CrossRef Google Scholar
|
[18]
|
S. Giani and P. Houston, Domain decomposition preconditioners for discontinuous Galerkin discretizations of compressible fluid flows, Numer. Math. Theory Methods Appl., 2014, 7(2), 123-148. doi: 10.4208/nmtma.2014.1311nm
CrossRef Google Scholar
|
[19]
|
R. Haferssas, P. Jolivet and F. Nataf, An additive Schwarz method type theory for Lions's algorithm and a symmetrized optimized restricted additive Schwarz method, SIAM J. Sci. Comput., 2017, 39(4), A1345-A1365. doi: 10.1137/16M1060066
CrossRef Google Scholar
|
[20]
|
S. Hamilton, M. Benzi and E. Haber, New multigrid smoothers for the Oseen problem, Numer. Linear Algebra Appl., 2010, 17(2-3), 557-576. doi: 10.1002/nla.707
CrossRef Google Scholar
|
[21]
|
Y. Huang, A practical formula for computing optimal parameters in the HSS iteration methods, J. Comput. Appl. Math., 2014, 255, 142-149. doi: 10.1016/j.cam.2013.01.023
CrossRef Google Scholar
|
[22]
|
O. Karakashian and C. Collins, Two-level additive Schwarz methods for discontinuous Galerkin approximations of second-order elliptic problems, IMA J. Numer. Anal., 2017, 37(4), 1800-1830.
Google Scholar
|
[23]
|
T. V. Kolev, J. Xu and Y. Zhu, Multilevel preconditioners for reaction-diffusion problems with discontinuous coefficients, J. Sci. Comput., 2016, 67(1), 324-350. doi: 10.1007/s10915-015-0083-7
CrossRef Google Scholar
|
[24]
|
L. Li, T. Huang and X. Liu, Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems, Comput. Math. Appl., 2007, 54(1), 147-159. doi: 10.1016/j.camwa.2006.12.024
CrossRef Google Scholar
|
[25]
|
L. Li, T. Huang and X. Liu, Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems, Numer. Linear Algebra Appl., 2007, 14(3), 217-235. doi: 10.1002/nla.528
CrossRef Google Scholar
|
[26]
|
S. Li and X. Cai, Convergence analysis of two-level space-time additive Schwarz method for parabolic equations, SIAM J. Numer. Anal., 2015, 53(6), 2727-2751. doi: 10.1137/140993776
CrossRef Google Scholar
|
[27]
|
S. Li and Z. Huang, Convergence analysis of HSS-multigrid methods for secondorder nonselfadjoint elliptic problems, BIT Numer. Math., 2013, 53(4), 987- 1012. doi: 10.1007/s10543-013-0433-5
CrossRef Google Scholar
|
[28]
|
S. Li and W. Li, The analysis of PMHSS-multigrid methods for elliptic problems with smooth complex coefficients, Appl. Math. Comput., 2015, 265, 196-206.
Google Scholar
|
[29]
|
S. Li, X. Shao and X. Cai, Multilevel space-time additive Schwarz methods for parabolic equation, SIAM J. Sci. Comput., 2018, 40(5), A3012-A3037. doi: 10.1137/17M113808X
CrossRef Google Scholar
|
[30]
|
L. Marcinkowski, T. Rahman, A. Loneland and J. Valdman, Additive Schwarz preconditioner for the general finite volume element discretization of symmetric elliptic problems, BIT Numer. Math., 2016, 56 (3), 967-993. doi: 10.1007/s10543-015-0581-x
CrossRef Google Scholar
|
[31]
|
A. M. Matsokin and S. V. Nepomnyaschikh, A Schwarz alternating method in a subspace, Soviet Math., 1985, 29, 78-84.
Google Scholar
|
[32]
|
L. F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system, SIAM J. Sci. Comput., 2008, 31(1), 420-443. doi: 10.1137/070706148
CrossRef Google Scholar
|
[33]
|
A. Toselli and O. B. Widlund, Domain Decomposition Methods-Algorithms and Theroy, Springer-Verlag Berlin Heidelberg, 2005.
Google Scholar
|
[34]
|
A. Yang, Scaled norm minimization method for computing the parameters of the HSS and the two-parameter HSS preconditioners, Numer. Linear Algebra Appl., 2018, 25(4), e2169. doi: 10.1002/nla.2169
CrossRef Google Scholar
|
[35]
|
A. Yang, J. An and Y. Wu, A generalized preconditioned HSS method for nonHermitian positive definite linear systems, Appl. Math. Comput., 2010, 216(6), 1715-1722.
Google Scholar
|
[36]
|
D. Yang, Non-iterative parallel Schwarz algorithms based on overlapping domain decomposition for parabolic partial differential equations, Math. Comp., 2017, 86(308), 2687-2718. doi: 10.1090/mcom/3102
CrossRef Google Scholar
|
[37]
|
Y. J. Yon and D. Y. Kwak, Two-level additive Schwarz preconditioners for P1 nonconforming finite elements for nonsymmetric and indefinite problems, Appl. Math. Comput., 1997, 87(1), 1-14. doi: 10.1016/S0377-0427(97)00167-2
CrossRef Google Scholar
|
[38]
|
X. Zhang, Multilevel Schwarz methods, Numer. Math., 1992, 63(4), 521-539.
Google Scholar
|