[1]
|
A. E. Achab and A. Amine, A construction of new exact periodic wave and solitary wave solutions for the 2D Ginzburg-Landau equation, Nonlinear Dynamics, 2018, 91(2), 995-999. doi: 10.1007/s11071-017-3924-0
CrossRef Google Scholar
|
[2]
|
D. Andrade, R. Stuhlmeier and M. Stiassnie, On the generalized kinetic equation for surface gravity waves, blow-up and its restraint, Fluids, 2019, 4(2), doi:10.3390/fluids4010002, 1-18.
CrossRef Google Scholar
|
[3]
|
M. Arshad, A. R. Seadawy, D. Lu and J. Wang, Travelling wave solutions of Drinfel'd-Sokolov-Wilson, Whitham-Broer-Kaup and (2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications, Chinese Journal of Physics, 2017, 55(3), 780-797. doi: 10.1016/j.cjph.2017.02.008
CrossRef Google Scholar
|
[4]
|
P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Berlin, Springer, 1971.
Google Scholar
|
[5]
|
A. Dur´ an, An efficient method to compute solitary wave solutions of fractional Korteweg-de Vries equations, International Journal of Computer Mathematics, 2018, 95(6-7), 1362-1374. doi: 10.1080/00207160.2017.1422732
CrossRef Google Scholar
|
[6]
|
E. Fan, A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equation, J. Math. Phys., 2001, 42(9), 4327-4344. doi: 10.1063/1.1389288
CrossRef Google Scholar
|
[7]
|
E. Fan, Integrable evolution systems based on Gerdjikov-Ivanov equations, biHamiltonian strutcure, finiti-dimensional integrable system s and N-fold Darboux transformation, J. Math. Phys., 2000, 41(11), 7769-7782. doi: 10.1063/1.1314895
CrossRef Google Scholar
|
[8]
|
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Sixth ed., Academic Press, 2000.
Google Scholar
|
[9]
|
X. Hu, A powerful approach to generate new integrable systems, J. Phys. A, 1994, 27(7), 2497-2514. doi: 10.1088/0305-4470/27/7/026
CrossRef Google Scholar
|
[10]
|
T. D. Leta, A. El Achab, W. Liu and J. Ding, Application of bifurcation method and rational sine-Gordon expansion method for solving 2D complex Ginzburg-Landau equation, International Journal of Modern Physics B, 2020, 34(9), 2050079, 1-19.
Google Scholar
|
[11]
|
J. Li, Geometric properties and exact travelling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, Journal of Nonlinear Modeling and Analysis, 2019, 1(1), 1-10.
Google Scholar
|
[12]
|
J. Liang and J. Li, Bifurcations and exact solutions of nonlinear Schrodinger equation with an anti-cubic nonlinearity, J. Appl. Anal. Comput., 2018, 8(4), 1194-1210.
Google Scholar
|
[13]
|
W. Ma, A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction, Chin. J. Contemp. Math., 1992, 13(1), 79-89.
Google Scholar
|
[14]
|
W. Ma, The algebraic structure related to L-A-B triad representations of integrable system, Chin. Sci. Bull., 1992, 37(15), 1249-1253.
Google Scholar
|
[15]
|
W. Ma, The Lie algebra structures of time-dependent symmetries of evolution equations, Acta Math. Appl. Sinica, 1994, 17(3), 388-392.
Google Scholar
|
[16]
|
J. A. Pava, Stability properties of solitary waves for fractional KdV and BBM equations, Nonlinearity, 2018, 31(3), 920-956. doi: 10.1088/1361-6544/aa99a2
CrossRef Google Scholar
|
[17]
|
G. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 1989, 39(2), 330-338.
Google Scholar
|
[18]
|
S. Xie and J. Cai, Exact compacton and generalized kink wave solutions of the extended reduced Ostrovsky equation, Commun Nonlinear Sci Numer Simulat., 2009, 14(9-10), 3561-3573. doi: 10.1016/j.cnsns.2009.02.001
CrossRef Google Scholar
|
[19]
|
S. Xie, X. Hong and T. Jiang, Planar bifurcation method of dynamical system for investigating different kinds of bounded travelling wave solutions of a generalized Camassa-Holm equation, J. Appl. Anal. Comput., 2017, 7(1), 278-290.
Google Scholar
|
[20]
|
S. Xie, Q. Lin and B. Gao, Periodic and solitary travelling-wave solutions of a CH-DP equation, Commun Nonlinear Sci Numer Simul, 2011, 16(11), 3941- 3948.
Google Scholar
|
[21]
|
S. Xie and L. Wang, Compacton and generalized kink wave solutions of the CH-DP equation, Appl. Math. Comput., 2010, 215(11), 4028-4039.
Google Scholar
|
[22]
|
S. Xie, L. Wang and Y. Zhang, Explicit and implicit solutions of a generalized Camassa-Holm Kadomtsev-Petviashvili equation, Commun Nonlinear Sci Numer Simu, 2012, 17(3), 1130-1141. doi: 10.1016/j.cnsns.2011.07.003
CrossRef Google Scholar
|
[23]
|
Y. Zhang, Z. Han and H. Tam, An integrable hierarchy and Darboux transformations, bilinear Backlund transformations of a reduced equation, Appl. Math. Comput., 2013, 219(11), 5837-5848.
Google Scholar
|
[24]
|
Y. Zhang and H. Zhang, A method for integrable coupling of TD hierarchy, J. Math. Phys., 2002, 43(1), 466-472. doi: 10.1063/1.1398061
CrossRef Google Scholar
|