2021 Volume 11 Issue 3
Article Contents

Yifen Ke, Changfeng Ma, Huai Zhang. THE PRECONDITIONED GAOR METHODS FOR GENERALIZED LEAST SQUARES PROBLEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1138-1160. doi: 10.11948/20190431
Citation: Yifen Ke, Changfeng Ma, Huai Zhang. THE PRECONDITIONED GAOR METHODS FOR GENERALIZED LEAST SQUARES PROBLEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1138-1160. doi: 10.11948/20190431

THE PRECONDITIONED GAOR METHODS FOR GENERALIZED LEAST SQUARES PROBLEMS

  • In this paper, we present some preconditioned generalized AOR (denoted by GAOR) methods for solving generalized least squares problems. We also compare the spectral radii of the iteration matrices of the proposed preconditioned and original methods. Finally, numerical experiments are provided to confirm the theoretical results.

    MSC: 65F10
  • 加载中
  • [1] A. Berman and R. J. Plemmoms, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.

    Google Scholar

    [2] A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 1978, 32, 149-157. doi: 10.1090/S0025-5718-1978-0483340-6

    CrossRef Google Scholar

    [3] Z. Huang, L. Wang, Z. Xu and J. Cui, Some new preconditioned generalized AOR methods for solving weighted linear least squares problems, Computat. Appl. Math., 2018, 37(1), 415-438. doi: 10.1007/s40314-016-0350-8

    CrossRef Google Scholar

    [4] Z. Huang, Z. Xu, Q. Lu and J. Cui, Some new preconditioned generalized AOR methods for generalized least-squares problems, Appl. Math. Comput., 2015, 269, 87-104.

    Google Scholar

    [5] W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois, 1939.

    Google Scholar

    [6] H. W. Kuhn and A. W. Tucker, "Nonlinear programming". Proceedings of 2nd Berkeley Symposium. Berkeley: University of California Press, 1951, 481-492.

    Google Scholar

    [7] S. Miao, Y. Luo and G. Wang, Two new preconditioned GAOR methods for weighted linear least squares problems, Appl. Math. Comput., 2018, 324, 93-104.

    Google Scholar

    [8] H. Shen, X. Shao, L. Wang and T. Zhang, Preconditioned iterative methods for solving weghted linear least squares problems, Appl. Math. Mech. Engl. Ed., 2012, 33(3), 375-384. doi: 10.1007/s10483-012-1557-x

    CrossRef Google Scholar

    [9] R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000.

    Google Scholar

    [10] G. Wang, Y. Du and F. Tan, Comparison results on preconditioned GAOR methods for weghted linear least squares problems, J. Appl. Math., Volume 2012, Article ID 563586, 9 pages.

    Google Scholar

    [11] G. Wang, T. Wang and F. Tan, Some results on preconditioned GAOR methods, Appl. Math. Comput., 2013, 219, 5811-5816.

    Google Scholar

    [12] G. Wang, H. Wen, L. Li and X. Li, Convergence of GAOR method for doubly diagonally dominantmatrices, Appl. Math. Comput., 2011, 217, 7509-7514.

    Google Scholar

    [13] J. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, 66, 571-584. doi: 10.1016/0377-0427(95)00167-0

    CrossRef Google Scholar

    [14] J. Yuan and X. Jin, Convergence of the generalized AOR method, Appl. Math. Comput., 1999, 99, 35-46.

    Google Scholar

    [15] J. Zhao, C. Li, F. Wang and Y. Li, Some new preconditioned generalized AOR methods for generalized least-squares problems, Int. J. Comput. Math., 2014, 91, 1370-1383. doi: 10.1080/00207160.2013.841900

    CrossRef Google Scholar

    [16] X. Zhou, Y. Song, L. Wang and Q. Liu, Preconditioned GAOR methods for solving weighted linear least squares problems, J. Comput. Appl. Math., 2009, 224, 242-249. doi: 10.1016/j.cam.2008.04.034

    CrossRef Google Scholar

Tables(6)

Article Metrics

Article views(1934) PDF downloads(293) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint