Citation: | Yifen Ke, Changfeng Ma, Huai Zhang. THE PRECONDITIONED GAOR METHODS FOR GENERALIZED LEAST SQUARES PROBLEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1138-1160. doi: 10.11948/20190431 |
In this paper, we present some preconditioned generalized AOR (denoted by GAOR) methods for solving generalized least squares problems. We also compare the spectral radii of the iteration matrices of the proposed preconditioned and original methods. Finally, numerical experiments are provided to confirm the theoretical results.
[1] | A. Berman and R. J. Plemmoms, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994. |
[2] | A. Hadjidimos, Accelerated overrelaxation method, Math. Comput., 1978, 32, 149-157. doi: 10.1090/S0025-5718-1978-0483340-6 |
[3] | Z. Huang, L. Wang, Z. Xu and J. Cui, Some new preconditioned generalized AOR methods for solving weighted linear least squares problems, Computat. Appl. Math., 2018, 37(1), 415-438. doi: 10.1007/s40314-016-0350-8 |
[4] | Z. Huang, Z. Xu, Q. Lu and J. Cui, Some new preconditioned generalized AOR methods for generalized least-squares problems, Appl. Math. Comput., 2015, 269, 87-104. |
[5] | W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois, 1939. |
[6] | H. W. Kuhn and A. W. Tucker, "Nonlinear programming". Proceedings of 2nd Berkeley Symposium. Berkeley: University of California Press, 1951, 481-492. |
[7] | S. Miao, Y. Luo and G. Wang, Two new preconditioned GAOR methods for weighted linear least squares problems, Appl. Math. Comput., 2018, 324, 93-104. |
[8] | H. Shen, X. Shao, L. Wang and T. Zhang, Preconditioned iterative methods for solving weghted linear least squares problems, Appl. Math. Mech. Engl. Ed., 2012, 33(3), 375-384. doi: 10.1007/s10483-012-1557-x |
[9] | R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000. |
[10] | G. Wang, Y. Du and F. Tan, Comparison results on preconditioned GAOR methods for weghted linear least squares problems, J. Appl. Math., Volume 2012, Article ID 563586, 9 pages. |
[11] | G. Wang, T. Wang and F. Tan, Some results on preconditioned GAOR methods, Appl. Math. Comput., 2013, 219, 5811-5816. |
[12] | G. Wang, H. Wen, L. Li and X. Li, Convergence of GAOR method for doubly diagonally dominantmatrices, Appl. Math. Comput., 2011, 217, 7509-7514. |
[13] | J. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 1996, 66, 571-584. doi: 10.1016/0377-0427(95)00167-0 |
[14] | J. Yuan and X. Jin, Convergence of the generalized AOR method, Appl. Math. Comput., 1999, 99, 35-46. |
[15] | J. Zhao, C. Li, F. Wang and Y. Li, Some new preconditioned generalized AOR methods for generalized least-squares problems, Int. J. Comput. Math., 2014, 91, 1370-1383. doi: 10.1080/00207160.2013.841900 |
[16] | X. Zhou, Y. Song, L. Wang and Q. Liu, Preconditioned GAOR methods for solving weighted linear least squares problems, J. Comput. Appl. Math., 2009, 224, 242-249. doi: 10.1016/j.cam.2008.04.034 |