2021 Volume 11 Issue 3
Article Contents

Zhifeng Weng, Shuying Zhai, Yuping Zeng, Xiaoqiang Yue. NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1161-1176. doi: 10.11948/20200025
Citation: Zhifeng Weng, Shuying Zhai, Yuping Zeng, Xiaoqiang Yue. NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1161-1176. doi: 10.11948/20200025

NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD

  • Corresponding author: Email address: yuexq@xtu.edu.cn (X. Yue)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11701197, 11701196, 11971414), Fundamental Research Funds for the Central Universities (ZQN-702), Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-YX502), Natural Science Foundation of Guangdong Province (2018A030307024) and Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (2018WK4006)
  • In this paper, a stabilized nonconforming mixed finite element method is used to solve the elliptic eigenvalue problem. Firstly, the lower-equal order element is used to discretize the space combined with the stabilization term based on the velocity projection method, and the error analysis is given. Moreover, the upper and lower bounds of eigenvalues are obtained. Finally, numerical experiments are carried out to verify the effectiveness of the proposed method.

    MSC: 65M60, 76D07, 65M12
  • 加载中
  • [1] D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 1984, 23, 337-344.

    Google Scholar

    [2] I. Babuška and J. Osborn, Eigenvalue Problems, Handbook of Numerical Analysis, 1991, 2, 641-787.

    Google Scholar

    [3] I. Babuška and J. Osborn, Finite Element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 1989, 52, 275-297. doi: 10.1090/S0025-5718-1989-0962210-8

    CrossRef Google Scholar

    [4] P. Bochev, C. Dohrmann and M. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 2006, 44, 82-101. doi: 10.1137/S0036142905444482

    CrossRef Google Scholar

    [5] P. Ciarlet, The finite element method for elliptic problems, SIAM, Philadelphia, 2002.

    Google Scholar

    [6] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, RAIRO Anal. Numer., 1973, 7, 33-75.

    Google Scholar

    [7] X. Feng, Z. Weng and H. Xie, Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem, Appl. Math., 2014, 59, 615-630. doi: 10.1007/s10492-014-0076-0

    CrossRef Google Scholar

    [8] J. Hu, Y. Huang and Q. Lin, Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods, J. Sci. Comput., 2014, 61, 196-221. doi: 10.1007/s10915-014-9821-5

    CrossRef Google Scholar

    [9] J. Hu, Y. Huang and Q. Shen, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 2014, 58, 574-591. doi: 10.1007/s10915-013-9744-6

    CrossRef Google Scholar

    [10] F. Jing, J. Su and H. Chen, A new stabilized nonconforming-mixed finite element method for the second order elliptic boundary value problem, Chinese Journal of Engineering Mathematics, 2013, 6, 846-854.

    Google Scholar

    [11] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem, RAIRO Anal. Numer., 1975, 9, 9-53.

    Google Scholar

    [12] J. Li and Y. He, A stabilized finite element method based on two local Gauss integrations for the Stokes equations, J. Comput. Appl. Math., 2008, 214, 58-65. doi: 10.1016/j.cam.2007.02.015

    CrossRef Google Scholar

    [13] Q. Lin, L. Tobiska and A. Zhou, On the superconvergence of nonconforming low order finite elements applied to the Poisson equation, IMA J. Numer. Anal., 2005, 25, 160-181. doi: 10.1093/imanum/drh008

    CrossRef Google Scholar

    [14] Q. Lin and H. Xie, The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods, Mathematics in Practice and Theory, 2012, 11, 219-226.

    Google Scholar

    [15] Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comp., 2015, 84, 71-88.

    Google Scholar

    [16] Q. Lin, H. Xie, F. Luo, Y. Li and Y. Yang, Stokes eigenvalue approximation from below with nonconforming mixed finite element methods, Mathematics in Practice and Theory, 2010, 19, 157-168.

    Google Scholar

    [17] Q. Lin, H. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comp., 2014, 83, 1-13.

    Google Scholar

    [18] F. Luo, Q. Lin and H. Xie, Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods, Sci. China Math., 2012, 55, 1069-1082. doi: 10.1007/s11425-012-4382-2

    CrossRef Google Scholar

    [19] B. Mercier, J. Osborn, J. Rappaz and P. A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp., 1981, 36, 427-453. doi: 10.1090/S0025-5718-1981-0606505-9

    CrossRef Google Scholar

    [20] L. Morley, The triangular equilibrium element in the solutions of plate bending problem, Aero. Quart., 1968, 19, 149-169. doi: 10.1017/S0001925900004546

    CrossRef Google Scholar

    [21] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Part. Diff. Eq., 1992, 8, 97-111. doi: 10.1002/num.1690080202

    CrossRef Google Scholar

    [22] D. Shi and Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations, Appl. Math. Comput., 2011, 218, 3176-3186.

    Google Scholar

    [23] F. Shi, J. Yu and K. Li, A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair, Int. J. Comput. Math., 2011, 88, 2293-2305. doi: 10.1080/00207160.2010.534466

    CrossRef Google Scholar

    [24] Z. Weng, X. Feng and P. Huang, A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems, Appl. Math. Model., 2012, 36, 5068-5079. doi: 10.1016/j.apm.2011.12.044

    CrossRef Google Scholar

    [25] Z. Weng, X. Feng and S. Zhai, Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem, Comput. Math. Appl., 2012, 64, 2635-2646. doi: 10.1016/j.camwa.2012.07.009

    CrossRef Google Scholar

    [26] E. Wilson, R. Taylor, W. Doherty and J. Ghaboussi, Incompatible displacement models, in: Numerical and Computer Methods in Structural Mechanics, Academic Press, New York, 1973, 43-57.

    Google Scholar

    [27] Q. Zhai, H. Xie, R. Zhang and Z. Zhang, The weak Galerkin method for elliptic eigenvalue problems, Commun. Comput. Phys., 2019, 26, 160-191. doi: 10.4208/cicp.OA-2018-0201

    CrossRef Google Scholar

    [28] Q. Zhai, H. Xie, R. Zhang and Z. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem, J. Sci. Comput., 2019, 79, 914-934. doi: 10.1007/s10915-018-0877-5

    CrossRef Google Scholar

    [29] H. Zheng, Y. Hou, F. Shi and L. Song, A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, J. Comput. Phys., 2009, 228, 5961-5977. doi: 10.1016/j.jcp.2009.05.006

    CrossRef Google Scholar

Figures(3)  /  Tables(6)

Article Metrics

Article views(3455) PDF downloads(328) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint