2021 Volume 11 Issue 3
Article Contents

Mingzhu Qu, Chunrui Zhang. TURING INSTABILITY AND PATTERNS OF THE FITZHUGH-NAGUMO MODEL IN SQUARE DOMAIN[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1371-1390. doi: 10.11948/20200182
Citation: Mingzhu Qu, Chunrui Zhang. TURING INSTABILITY AND PATTERNS OF THE FITZHUGH-NAGUMO MODEL IN SQUARE DOMAIN[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1371-1390. doi: 10.11948/20200182

TURING INSTABILITY AND PATTERNS OF THE FITZHUGH-NAGUMO MODEL IN SQUARE DOMAIN

  • In this paper, critical conditions of Turing instability for Fitzhugh-Nagumo (FHN) model with diffusion under Neumann boundary conditions are derived. Moreover, different from previous works about the FHN model, we obtain simple bifurcation, double bifurcation, and four-fold bifurcation with stripe pattern, rectangular pattern, spot pattern, square pattern, and highly developed square pattern, respectively. Meanwhile, the theoretical results are applied to two coupled FHN model with diffusion, and the process of the coupling strengths affecting the stability of the model is presented by numerical simulations.

    MSC: 35B32, 35B36, 35K57
  • 加载中
  • [1] I. Biktasheva, A. Holden and V. Biktashev, Localization of response functions of spiral waves in the FitzHugh-Nagumo system, Int. J. Bifurcation Chaos, 2006, 16(5), 1547-1555. doi: 10.1142/S0218127406015490

    CrossRef Google Scholar

    [2] N. Buric and D. Todorovic, Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E, 2003, 67(2), 066222.

    Google Scholar

    [3] S. Chowdhury, M. Biswas and R. Dutta, Approximate controllability of the FitzHugh-Nagumo equation in one dimension, J. Differ. Equ., 2020, 268(7), 3497-3563. doi: 10.1016/j.jde.2019.10.001

    CrossRef Google Scholar

    [4] B. Ermentrout, Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square, Proc. R. Soc. A-Math. Phys. Eng. Sci., 1991, 434(1891), 413-417.

    Google Scholar

    [5] G. Ermentrout and J. Cowan, A mathematical theory of visual hallucination patterns, Biol. Cybern., 1979, 34(3), 137-150. doi: 10.1007/BF00336965

    CrossRef Google Scholar

    [6] P. Fife, Mathematical aspects of reacting and diffusing systems, Springer-Verlag, 1979.

    Google Scholar

    [7] R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1961, 1(6), 445-466. doi: 10.1016/S0006-3495(61)86902-6

    CrossRef Google Scholar

    [8] D. Fan and L. Hong, Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(7), 1873-1886. doi: 10.1016/j.cnsns.2009.07.025

    CrossRef Google Scholar

    [9] P. Gong and J. Xu, Global dynamics and stochastic resonance of the forced FitzHugh-Nagumo neuron model, Phys. Rev. E, 2001, 63(3), 031906. doi: 10.1103/PhysRevE.63.031906

    CrossRef Google Scholar

    [10] V. Gaiko, Global bifurcations of multiple limit cycles in the FitzHugh-Nagumo system, Mathematics, 2011, 74(18), 7532-7542.

    Google Scholar

    [11] A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. London, 1952, 117(4), 500-544. doi: 10.1113/jphysiol.1952.sp004764

    CrossRef Google Scholar

    [12] W. Jiang, H. Wang and X. Cao, Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 2018, 31(4), 2223-2247.

    Google Scholar

    [13] A. Jalnine, Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh-Nagumo systems. Commun. Nonlinear Sci. Numer. Simul., 2013, 23(1-3), 202-208.

    Google Scholar

    [14] G. Le, A. Pocheau and V. Croquette, Square versus roll pattern at convective threshold, Phys. Rev. Lett., 1985, 54(23), 2501-2504. doi: 10.1103/PhysRevLett.54.2501

    CrossRef Google Scholar

    [15] J. Li, H. Wang and Q. Ouyang, Square Turing patterns in reaction-diffusion systems with coupled layers, Chaos, 2014, 24(2), 023115. doi: 10.1063/1.4875262

    CrossRef Google Scholar

    [16] J. Murray, Mathematical biology, Biomath, 2002, 19(1-2), 261-283.

    Google Scholar

    [17] S. Mohyud-Din, Y. Khan, N. Faraz, et al., Exp-function method for solitary and periodic solutions of Fitzhugh-Nagumo equation, Int. J. Numer. Methods Heat Fluid Flow, 2012, 22(3), 335-341. doi: 10.1108/09615531211208042

    CrossRef Google Scholar

    [18] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion system, SIAM Journal on Mathematical Analysis, 1982, 13(4), 555-593. doi: 10.1137/0513037

    CrossRef Google Scholar

    [19] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the Ire, 1962, 50(10), 2061-2070. doi: 10.1109/JRPROC.1962.288235

    CrossRef Google Scholar

    [20] I. Nagy, V. Romanovski and J. Toth, Two nested limit cycles in two-species reactions, Mathematics, 2020, 8(10), 1658. doi: 10.3390/math8101658

    CrossRef Google Scholar

    [21] Q. Ouyang, Nonlinear science and pattern dynamics, Peking University Press, Beijing, 2010.

    Google Scholar

    [22] D. Olmos and B. Shizgal, Pseudospectral method of solution of the Fitzhugh-Nagumo equation, Math. Comput. Simul., 2009, 79(7), 2258-2278. doi: 10.1016/j.matcom.2009.01.001

    CrossRef Google Scholar

    [23] M. Pierre, T. Suzuki and H. Umakoshi, Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria, J. Appl. Anal. Comput., 2018, 8(3), 836-858.

    Google Scholar

    [24] R. Rameh, E. Cherry and R. Santos, Single-variable delay-differential equation approximations of the Fitzhugh-Nagumo and Hodgkin-Huxley models, Commun. Nonlinear Sci. Numer. Simul., 2020, 82, 105066. doi: 10.1016/j.cnsns.2019.105066

    CrossRef Google Scholar

    [25] B. Sounvoravong and S. Guo, N-dark soliton solutions for the multicomponen Maccari system, Journal of Nonlinear Modeling and Analysis, 2019, 1(3), 319-334.

    Google Scholar

    [26] Y. Song, H. Jiang and Y. Yuan, Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model, J. Appl. Anal. Comput., 2019, 9(3), 1132-1164.

    Google Scholar

    [27] Y. Song, S. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equ., 2019, 267(11), 6316-6251. doi: 10.1016/j.jde.2019.06.025

    CrossRef Google Scholar

    [28] Y. Song and J. Xu, Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23(10), 1659-1670. doi: 10.1109/TNNLS.2012.2209459

    CrossRef Google Scholar

    [29] A. Turing, The chemical basis of morphogenesis. Philosophical Transactions of The Royal Society, Series B, Biological Sciences, 1952, 237(641), 37-72.

    Google Scholar

    [30] C. Varea, J. Aragon and R. Barrio, Confined Turing patterns in growing systems, Phys. Rev. E, 1997, 56(1), 1250-1253. doi: 10.1103/PhysRevE.56.1250

    CrossRef Google Scholar

    [31] C. Wagner, H. Muller and K. Knorr, Pattern formation at the bicritical point of the Faraday instability, Phys. Rev. E, 2003, 68(6), 066204. doi: 10.1103/PhysRevE.68.066204

    CrossRef Google Scholar

    [32] C. Zhang, A. Ke and B. Zheng, Patterns of interaction of coupled reaction-diffusion systems of the FitzHugh-Nagumo type, Nonlinear Dyn., 2019, 97(2), 1451-1476. doi: 10.1007/s11071-019-05065-8

    CrossRef Google Scholar

Figures(16)  /  Tables(1)

Article Metrics

Article views(2307) PDF downloads(356) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint