2021 Volume 11 Issue 3
Article Contents

Gamaliel Blé, Iván Loreto–Hernández. TWO-DIMENSIONAL ATTRACTING TORUS IN AN INTRAGUILD PREDATION MODEL WITH GENERAL FUNCTIONAL RESPONSES AND LOGISTIC GROWTH RATE FOR THE PREY[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1557-1576. doi: 10.11948/20200282
Citation: Gamaliel Blé, Iván Loreto–Hernández. TWO-DIMENSIONAL ATTRACTING TORUS IN AN INTRAGUILD PREDATION MODEL WITH GENERAL FUNCTIONAL RESPONSES AND LOGISTIC GROWTH RATE FOR THE PREY[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1557-1576. doi: 10.11948/20200282

TWO-DIMENSIONAL ATTRACTING TORUS IN AN INTRAGUILD PREDATION MODEL WITH GENERAL FUNCTIONAL RESPONSES AND LOGISTIC GROWTH RATE FOR THE PREY

  • Author Bio: Emails: iloretohe@conacyt.mx(I. Loreto–Hernández)
  • Corresponding author: Emails: gble@ujat.mx (G. Blé) 
  • The population coexistence in an intraguild food web model is analyzed. Three populations, the prey, the predator and super predator, are considered, where these last two populations are specialists. The sufficient conditions to guarantee a coexistence point, where the intraguild predation model exhibits a zero-Hopf bifurcation, are given. For a wide family of functional responses, these conditions are valid. The numerical simulations varying the functional responses are given. Different limit sets such as, limit cycles or invariant torus are shown.

    MSC: 37G15, 37C75, 92D25, 92D40
  • 加载中
  • [1] F. Capone, M. Carfora and R. D. Luca, On the dynamics of an intraguild predator-prey model, Math. Comput. Simulation, 2018, 149, 17-31. doi: 10.1016/j.matcom.2018.01.004

    CrossRef Google Scholar

    [2] V. Castellanos, J. Llibre and I. Quilantán, Simultaneous periodic orbits bifurcating from two zero-Hopf equilibria in a tritrophic food chain model, J Appl Math Phys., 2013, 1, 31-38.

    Google Scholar

    [3] F. Castillo-Santos, M. Dela-Rosa and I. Loreto-Hernández, Existence of a Limit Cycle in an Intraguild Food Web Model with Holling Type Ⅱ and LogisticGrowth for the Common Prey, Applied Mathematics, 2017, 8, 358-376. doi: 10.4236/am.2017.83030

    CrossRef Google Scholar

    [4] J. H. P. Dawes and M. O. Souza, A derivation of Holling's type Ⅰ, Ⅱ and Ⅲ functional responses in predator-prey systems, J. of Theor. Biol., 2013, 327, 11-22. doi: 10.1016/j.jtbi.2013.02.017

    CrossRef Google Scholar

    [5] J. Ginoux and J. Llibre, Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type, Math. Methods Appl. Sci., 2017, 40(18), 7858-7866. doi: 10.1002/mma.4569

    CrossRef Google Scholar

    [6] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar

    [7] J. Guckenheimer and Y. A. Kuznetsov, Fold-Hopf bifurcation, Scholarpedia, 2007, 2(10), 1855. doi: 10.4249/scholarpedia.1855

    CrossRef Google Scholar

    [8] C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 1959, 91, 385-398. doi: 10.4039/Ent91385-7

    CrossRef Google Scholar

    [9] R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, Am. Nat., 1997, 149(4), 745-764. doi: 10.1086/286018

    CrossRef Google Scholar

    [10] Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 2013, 67, 1227-1259. doi: 10.1007/s00285-012-0584-z

    CrossRef Google Scholar

    [11] M. H. Khan and Z. Yoldaş, Intraguild predation between two aphidophagous coccinellids, Hippodamia variegata (G. ) and Coccinella septempunctata L. (Coleoptera: Coccinellidae): the role of prey abundance, Biological Control, 2018, 126, 7-14. doi: 10.1016/j.biocontrol.2018.07.011

    CrossRef Google Scholar

    [12] Y. A. Kuznetsov, Elements of applied Bifurcation Theory, 3rd Edn, Springer-Verlag, 2004.

    Google Scholar

    [13] H. Liu, T. Li and F. Zhangi, A prey-predator model with Holling Ⅱ functional response and the carrying capacity of predator depending on its prey, J. Appl. Anal. Comput., 2018, 8(5), 1464-1474.

    Google Scholar

    [14] J. P. Mendonça, I. Gleria and M. L. Lyra, Prey refuge and morphological defense mechanisms as nonlinear triggers in an intraguild predation food web, Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105373. doi: 10.1016/j.cnsns.2020.105373

    CrossRef Google Scholar

    [15] T. Okuyama, Intraguild predation in biological control: consideration of multiple resource species, BioControl, 2009, 54, 3-7. doi: 10.1007/s10526-008-9154-0

    CrossRef Google Scholar

    [16] L. Petráková, R. Michalko, P. Loverre et al., Intraguild predation among spiders and their effect on the pear psylla during winter, Agriculture, Ecosystems & Environment, 2016, 233, 67-74.

    Google Scholar

    [17] G. A. Polis, C. A. Myers and R. D. Holt, The ecology and evolution of intraguild predation: Potential competitors that eat each other, Annual Review of Ecology and Systematics, 1989, 20(1), 297-330. doi: 10.1146/annurev.es.20.110189.001501

    CrossRef Google Scholar

    [18] H. M. Safuan, H. S. Sidhu, Z. Jovanoski and I. N. Tower, A two-species predator-prey model in an environment enriched by a biotic resource, ANZIAM J., 2014, 54, 768-787. doi: 10.21914/anziamj.v54i0.6376

    CrossRef Google Scholar

    [19] D. Sen, S. Ghorai and M. Banerjee, Complex dynamics of a three species prey-predator model with intraguild predation, Ecological Complexity, 2018, 34, 9-22. doi: 10.1016/j.ecocom.2018.02.002

    CrossRef Google Scholar

    [20] J. Wang and W. Jiang, Hopf-zero bifurcation of a delayed predator-prey model with dormancy of predators, J. Appl. Anal. Comput., 2017, 7(3), 1051-1069.

    Google Scholar

    [21] P. Yang, Hopf bifurcation of an age-structured prey-predator model with Holling type Ⅱ functional response incorporating a prey refuge, Nonlinear Anal. Real World Appl., 2019, 49, 368-385. doi: 10.1016/j.nonrwa.2019.03.014

    CrossRef Google Scholar

    [22] P. Yang and Y. Wang, Hopf-zero bifurcation in an age-dependent predator-prey system with Monod-Haldane functional response comprising strong Allee effect, J. Differential Equations, 2020, 269(11), 9583-9618. doi: 10.1016/j.jde.2020.06.048

    CrossRef Google Scholar

Figures(8)  /  Tables(6)

Article Metrics

Article views(2192) PDF downloads(262) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint