Citation: | Fuchen Zhang, Ping Zhou, Jin Qin, Chunlai Mu, Fei Xu. DYNAMICS OF A GENERALIZED LORENZ-LIKE CHAOS DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1577-1587. doi: 10.11948/20200309 |
In this work, a new seven-parameter Lorenz-like chaotic system is presented and discussed by combining nonlinear dynamical systems theory with computer simulation. The existence of the ultimate bound set and global exponential attractive set of this chaotic system is proved by using Lyapunov's direct method. A family of analytic mathematical expression of the ultimate bound sets and global exponential attractive sets involving two parameters are obtained, respectively. Meanwhile, the volumes of the ultimate bound set and global exponential attractive set are obtained, respectively. Numerical simulations are conducted which validates the correctness of the proposed theoretical analysis.
[1] | C. Chen, J. Cao and X. Zhang, The topological structure of the Rabinovich system having an invariant algebraic surface, Nonlinearity., 2008, 21, 211-220. doi: 10.1088/0951-7715/21/2/002 |
[2] | G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1999, 9, 1465-1466. doi: 10.1142/S0218127499001024 |
[3] | D. Dudkowski, S. Jafari, T. Kapitaniak, N. Kuznetsov, G. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 2016, 637, 1-50. doi: 10.1016/j.physrep.2016.05.002 |
[4] | E. Elsayed and A. Ahmed, Dynamics of a three-dimensional systems of rational difference equations, Math. Methods Appl. Sci., 2016, 39(5), 1026-1038. doi: 10.1002/mma.3540 |
[5] | P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. Differ. Equ., 1983, 49(2), 185-207. doi: 10.1016/0022-0396(83)90011-6 |
[6] | T. Huang, G. Chen and J. Kurths, Synchronization of chaotic systems with time-varying coupling delays, Discrete Continuous Dyn. Syst. Ser. B., 2011, 16, 1071-1082. doi: 10.3934/dcdsb.2011.16.1071 |
[7] | N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad and M. Shrimali, Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn., 2018, 92(2), 267-285. doi: 10.1007/s11071-018-4054-z |
[8] | N. Kuznetsov, T. Mokaev, O. Kuznetsova, et al. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension, Nonlin. Dyn., 2020, 102, 713-732. doi: 10.1007/s11071-020-05856-4 |
[9] | E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20, 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 |
[10] | G. Leonov, General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems, Phys. Lett. A., 2012, 376, 3045-3050. doi: 10.1016/j.physleta.2012.07.003 |
[11] | G. Leonov, Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system, Phys. Lett. A, 2015, 379(6), 524-528. doi: 10.1016/j.physleta.2014.12.005 |
[12] | G. Leonov, Bounds for attractors and the existence of homoclinic orbits in the Lorenz system, J. Appl. Math. Mech., 2001, 65(1), 19-32. doi: 10.1016/S0021-8928(01)00004-1 |
[13] | G. Leonov, A. Bunin and N. Koksch, Attractor localization of the Lorenz system, Z. Angew. Math. Mech., 1978, 67, 649-656. |
[14] | G. Leonov and V. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 1992, 26(1), 1-60. doi: 10.1007/BF00046607 |
[15] | J. Lu and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12(3), 659-661. doi: 10.1142/S0218127402004620 |
[16] | J. Lu, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12, 2917-2926. doi: 10.1142/S021812740200631X |
[17] | X. Liao, Y. Fu, S. Xie and P. Yu, Globally exponentially attractive sets of the family of Lorenz systems, Sci. China, Ser. F., 2008, 51(3), 283-292. |
[18] | G. Leonov and N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2013, 23, 1330002. doi: 10.1142/S0218127413300024 |
[19] | G. Leonov, N. Kuznetsov and T. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Spec. Top., 2015, 224(8), 1421-1458. doi: 10.1140/epjst/e2015-02470-3 |
[20] | G. Leonov, N. Kuznetsov and V. Vagaitsev, Hidden attractor in smooth Chua systems, Physica D., 2012, 41(18), 1482-1486. |
[21] | Z. Liu, C. Wang, W. Jin and J. Ma, Capacitor coupling induces synchronization between neural circuits, Nonlinear Dyn., 2019, 97, 2661-2673. doi: 10.1007/s11071-019-05155-7 |
[22] | H. Liu, X. Wang and Q. Zhu, Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching, Phys. Lett A, 2011, 375(30-31), 2828-2835. doi: 10.1016/j.physleta.2011.06.029 |
[23] | T. Li and J. Yorke, Period three implies chaos, Am. Math. Mon., 1975, 82, 985-992. doi: 10.1080/00029890.1975.11994008 |
[24] | J. Ma, F. Wu, W. Jin, P. Zhou and T. Hayat, Calculation of Hamilton energy and control of dynamical systems with different types of attractors, Chaos, 2017, 27(5), 053108. doi: 10.1063/1.4983469 |
[25] | W. Qin and G. Chen, On the boundedness of solutions of the Chen system, J. Math. Anal. Appl., 2007, 329(11), 445-451. |
[26] | M. Rabinovich, Stochastic self-oscillations and turbulence, Soviet Physics Uspekhi, 1978, 21(5), 443-469. doi: 10.1070/PU1978v021n05ABEH005555 |
[27] | O. Rossler, An equation for hyperchaos, Phys. Lett. A., 1979, 2-3, 155-157. |
[28] | L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Phys. Scr., 1996, 3, 83-84. |
[29] | P. Sooraksa and G. Chen, Chen system as a controlled weather model-physical principle, engineering design and real applications, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2018, 28(04), 1830009. doi: 10.1142/S0218127418300094 |
[30] | J. Sprott, X. Wang and G. Chen, When two dual chaotic systems shake hands, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2014, 24(06), 1450086. doi: 10.1142/S0218127414500862 |
[31] | X. Wang and G. Chen, Constructing a chaotic system with any number of equilibria, Nonlin. Dyn., 2013, 71, 429-436. doi: 10.1007/s11071-012-0669-7 |
[32] | A. Wolf, J. Swift, H. Swinney and J. Vastano, Determining Lyapunov exponents from a time series, Physica D, 1985, 16, 285-317. doi: 10.1016/0167-2789(85)90011-9 |
[33] | X. Wang and J. Song, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(8), 3351-3357. doi: 10.1016/j.cnsns.2009.01.010 |
[34] | X. Wang and M. Wang, Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos 2007, 17(3), 033106. doi: 10.1063/1.2755420 |
[35] | F. Xie and X. Zhang, Invariant algebraic surfaces of the Rabinovich system, Journal of Physics A: Mathematical and General, 2003, 36(2), 499-516. doi: 10.1088/0305-4470/36/2/314 |
[36] | Z. Yao, J. Ma, Y. Yao and C. Wang, Synchronization realization between two nonlinear circuits via an induction coil coupling, Nonlinear Dyn., 2019, 96, 205-217. doi: 10.1007/s11071-019-04784-2 |
[37] | Q. Yang and X. Qiao, Constructing a new 3D chaotic system with any number of equilibria, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2019, 29(5), 1950060. doi: 10.1142/S0218127419500603 |
[38] | Z. Yao, P. Zhou, A. Alsaedi and J. Ma, Energy flow-guided synchronization between chaotic circuits, Appl. Math. Comput., 2020, 374, 124998. |
[39] | X. Zhang, Integrals of motion of the Rabinovich system, Journal of Physics A: Mathematical and General, 2000, 33, 5137-5155. doi: 10.1088/0305-4470/33/28/315 |
[40] | F. Zhang, R. Chen, X. Wang, X. Chen, C. Mu and X. Liao, Dynamics of a new 5D hyperchaotic system of Lorenz type, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2018, 28(3), 1850036. doi: 10.1142/S0218127418500360 |
[41] | F. Zhang, X. Liao, G. Zhang and C. Mu, Dynamical analysis of the generalized Lorenz systems, J. Dyn. Control Syst., 2017, 23(2), 349-362. doi: 10.1007/s10883-016-9325-8 |
[42] | F. Zhang, X. Liao, G. Zhang, C. Mu, P. Zhou and M. Xiao, Dynamical behaviors of a generalized Lorenz family, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(10) 3707-3720. |
[43] | F. Zhang, X. Liao and G. Zhang, On the global boundedness of the Lu system, Appl. Math. Comput., 2016, 284, 332-339. |
[44] | F. Zhang, X. Liao, C. Mu, G. Zhang and Y. Chen, On global boundedness of the Chen system, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(4), 1673-1681. |
[45] | F. Zhang, X. Liao and G. Zhang, Some new results for the generalized Lorenz system, Qual. Theory Dyn. Syst., 2017, 16(3), 749-759. doi: 10.1007/s12346-016-0206-z |
[46] | F. Zhang, C. Mu and X. Li, On the boundness of some solutions of the Lu system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2012, 22, 1250015. doi: 10.1142/S0218127412500150 |
[47] | F. Zhang, C. Mu, S. Zhou and P. Zheng, New results of the ultimate bound on the trajectories of the family of the Lorenz systems, Discrete Contin. Dyn. Syst., Ser. B., 2015, 20(4), 1261-1276. doi: 10.3934/dcdsb.2015.20.1261 |
[48] | F. Zhang, G. Yang, Y. Zhang, X. Liao and G. Zhang, Qualitative study of a 4D chaos financial system, Complexity, 2018, 2018, 3789873. |
[49] | F. Zhang and G. Zhang, Further results on ultimate bound on the trajectories of the Lorenz system, Qual. Theory Dyn. Syst., 2016, 15(1), 221-235. doi: 10.1007/s12346-015-0137-0 |