2021 Volume 11 Issue 3
Article Contents

Fuchen Zhang, Ping Zhou, Jin Qin, Chunlai Mu, Fei Xu. DYNAMICS OF A GENERALIZED LORENZ-LIKE CHAOS DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1577-1587. doi: 10.11948/20200309
Citation: Fuchen Zhang, Ping Zhou, Jin Qin, Chunlai Mu, Fei Xu. DYNAMICS OF A GENERALIZED LORENZ-LIKE CHAOS DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1577-1587. doi: 10.11948/20200309

DYNAMICS OF A GENERALIZED LORENZ-LIKE CHAOS DYNAMICAL SYSTEMS

  • Corresponding author: Email: zhangfuchen1983@163.com(F. Zhang) 
  • Fund Project: The authors were supported by Chongqing Postdoctoral Science Foundation Special Funded Project (No. Xm2017174), China Postdoctoral Science Foundation (No. 2016M590850), National Natural Science Foundation of China (No. 11871122), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos. KJQN201800818, KJCX2020037), the Research Fund of Chongqing Technology and Business University (Nos. 1952012, 1952026, 1951075), the Program for Chongqing Key Laboratory of Social Economy and Applied Statistics (No. ZDPTTD201909) and Cooperative program of Guizhou Provincial Department of science and technology (No. Qian Ke he LH [2015] No. 7042)
  • In this work, a new seven-parameter Lorenz-like chaotic system is presented and discussed by combining nonlinear dynamical systems theory with computer simulation. The existence of the ultimate bound set and global exponential attractive set of this chaotic system is proved by using Lyapunov's direct method. A family of analytic mathematical expression of the ultimate bound sets and global exponential attractive sets involving two parameters are obtained, respectively. Meanwhile, the volumes of the ultimate bound set and global exponential attractive set are obtained, respectively. Numerical simulations are conducted which validates the correctness of the proposed theoretical analysis.

    MSC: 34D06, 34H10
  • 加载中
  • [1] C. Chen, J. Cao and X. Zhang, The topological structure of the Rabinovich system having an invariant algebraic surface, Nonlinearity., 2008, 21, 211-220. doi: 10.1088/0951-7715/21/2/002

    CrossRef Google Scholar

    [2] G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1999, 9, 1465-1466. doi: 10.1142/S0218127499001024

    CrossRef Google Scholar

    [3] D. Dudkowski, S. Jafari, T. Kapitaniak, N. Kuznetsov, G. Leonov and A. Prasad, Hidden attractors in dynamical systems, Physics Reports, 2016, 637, 1-50. doi: 10.1016/j.physrep.2016.05.002

    CrossRef Google Scholar

    [4] E. Elsayed and A. Ahmed, Dynamics of a three-dimensional systems of rational difference equations, Math. Methods Appl. Sci., 2016, 39(5), 1026-1038. doi: 10.1002/mma.3540

    CrossRef Google Scholar

    [5] P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. Differ. Equ., 1983, 49(2), 185-207. doi: 10.1016/0022-0396(83)90011-6

    CrossRef Google Scholar

    [6] T. Huang, G. Chen and J. Kurths, Synchronization of chaotic systems with time-varying coupling delays, Discrete Continuous Dyn. Syst. Ser. B., 2011, 16, 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

    CrossRef Google Scholar

    [7] N. Kuznetsov, G. Leonov, T. Mokaev, A. Prasad and M. Shrimali, Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system, Nonlinear Dyn., 2018, 92(2), 267-285. doi: 10.1007/s11071-018-4054-z

    CrossRef Google Scholar

    [8] N. Kuznetsov, T. Mokaev, O. Kuznetsova, et al. The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension, Nonlin. Dyn., 2020, 102, 713-732. doi: 10.1007/s11071-020-05856-4

    CrossRef Google Scholar

    [9] E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20, 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    CrossRef Google Scholar

    [10] G. Leonov, General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems, Phys. Lett. A., 2012, 376, 3045-3050. doi: 10.1016/j.physleta.2012.07.003

    CrossRef Google Scholar

    [11] G. Leonov, Existence criterion of homoclinic trajectories in the Glukhovsky-Dolzhansky system, Phys. Lett. A, 2015, 379(6), 524-528. doi: 10.1016/j.physleta.2014.12.005

    CrossRef Google Scholar

    [12] G. Leonov, Bounds for attractors and the existence of homoclinic orbits in the Lorenz system, J. Appl. Math. Mech., 2001, 65(1), 19-32. doi: 10.1016/S0021-8928(01)00004-1

    CrossRef Google Scholar

    [13] G. Leonov, A. Bunin and N. Koksch, Attractor localization of the Lorenz system, Z. Angew. Math. Mech., 1978, 67, 649-656.

    Google Scholar

    [14] G. Leonov and V. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 1992, 26(1), 1-60. doi: 10.1007/BF00046607

    CrossRef Google Scholar

    [15] J. Lu and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12(3), 659-661. doi: 10.1142/S0218127402004620

    CrossRef Google Scholar

    [16] J. Lu, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12, 2917-2926. doi: 10.1142/S021812740200631X

    CrossRef Google Scholar

    [17] X. Liao, Y. Fu, S. Xie and P. Yu, Globally exponentially attractive sets of the family of Lorenz systems, Sci. China, Ser. F., 2008, 51(3), 283-292.

    Google Scholar

    [18] G. Leonov and N. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2013, 23, 1330002. doi: 10.1142/S0218127413300024

    CrossRef Google Scholar

    [19] G. Leonov, N. Kuznetsov and T. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Spec. Top., 2015, 224(8), 1421-1458. doi: 10.1140/epjst/e2015-02470-3

    CrossRef Google Scholar

    [20] G. Leonov, N. Kuznetsov and V. Vagaitsev, Hidden attractor in smooth Chua systems, Physica D., 2012, 41(18), 1482-1486.

    Google Scholar

    [21] Z. Liu, C. Wang, W. Jin and J. Ma, Capacitor coupling induces synchronization between neural circuits, Nonlinear Dyn., 2019, 97, 2661-2673. doi: 10.1007/s11071-019-05155-7

    CrossRef Google Scholar

    [22] H. Liu, X. Wang and Q. Zhu, Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching, Phys. Lett A, 2011, 375(30-31), 2828-2835. doi: 10.1016/j.physleta.2011.06.029

    CrossRef Google Scholar

    [23] T. Li and J. Yorke, Period three implies chaos, Am. Math. Mon., 1975, 82, 985-992. doi: 10.1080/00029890.1975.11994008

    CrossRef Google Scholar

    [24] J. Ma, F. Wu, W. Jin, P. Zhou and T. Hayat, Calculation of Hamilton energy and control of dynamical systems with different types of attractors, Chaos, 2017, 27(5), 053108. doi: 10.1063/1.4983469

    CrossRef Google Scholar

    [25] W. Qin and G. Chen, On the boundedness of solutions of the Chen system, J. Math. Anal. Appl., 2007, 329(11), 445-451.

    Google Scholar

    [26] M. Rabinovich, Stochastic self-oscillations and turbulence, Soviet Physics Uspekhi, 1978, 21(5), 443-469. doi: 10.1070/PU1978v021n05ABEH005555

    CrossRef Google Scholar

    [27] O. Rossler, An equation for hyperchaos, Phys. Lett. A., 1979, 2-3, 155-157.

    Google Scholar

    [28] L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Phys. Scr., 1996, 3, 83-84.

    Google Scholar

    [29] P. Sooraksa and G. Chen, Chen system as a controlled weather model-physical principle, engineering design and real applications, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2018, 28(04), 1830009. doi: 10.1142/S0218127418300094

    CrossRef Google Scholar

    [30] J. Sprott, X. Wang and G. Chen, When two dual chaotic systems shake hands, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2014, 24(06), 1450086. doi: 10.1142/S0218127414500862

    CrossRef Google Scholar

    [31] X. Wang and G. Chen, Constructing a chaotic system with any number of equilibria, Nonlin. Dyn., 2013, 71, 429-436. doi: 10.1007/s11071-012-0669-7

    CrossRef Google Scholar

    [32] A. Wolf, J. Swift, H. Swinney and J. Vastano, Determining Lyapunov exponents from a time series, Physica D, 1985, 16, 285-317. doi: 10.1016/0167-2789(85)90011-9

    CrossRef Google Scholar

    [33] X. Wang and J. Song, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(8), 3351-3357. doi: 10.1016/j.cnsns.2009.01.010

    CrossRef Google Scholar

    [34] X. Wang and M. Wang, Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos 2007, 17(3), 033106. doi: 10.1063/1.2755420

    CrossRef Google Scholar

    [35] F. Xie and X. Zhang, Invariant algebraic surfaces of the Rabinovich system, Journal of Physics A: Mathematical and General, 2003, 36(2), 499-516. doi: 10.1088/0305-4470/36/2/314

    CrossRef Google Scholar

    [36] Z. Yao, J. Ma, Y. Yao and C. Wang, Synchronization realization between two nonlinear circuits via an induction coil coupling, Nonlinear Dyn., 2019, 96, 205-217. doi: 10.1007/s11071-019-04784-2

    CrossRef Google Scholar

    [37] Q. Yang and X. Qiao, Constructing a new 3D chaotic system with any number of equilibria, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2019, 29(5), 1950060. doi: 10.1142/S0218127419500603

    CrossRef Google Scholar

    [38] Z. Yao, P. Zhou, A. Alsaedi and J. Ma, Energy flow-guided synchronization between chaotic circuits, Appl. Math. Comput., 2020, 374, 124998.

    Google Scholar

    [39] X. Zhang, Integrals of motion of the Rabinovich system, Journal of Physics A: Mathematical and General, 2000, 33, 5137-5155. doi: 10.1088/0305-4470/33/28/315

    CrossRef Google Scholar

    [40] F. Zhang, R. Chen, X. Wang, X. Chen, C. Mu and X. Liao, Dynamics of a new 5D hyperchaotic system of Lorenz type, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2018, 28(3), 1850036. doi: 10.1142/S0218127418500360

    CrossRef Google Scholar

    [41] F. Zhang, X. Liao, G. Zhang and C. Mu, Dynamical analysis of the generalized Lorenz systems, J. Dyn. Control Syst., 2017, 23(2), 349-362. doi: 10.1007/s10883-016-9325-8

    CrossRef Google Scholar

    [42] F. Zhang, X. Liao, G. Zhang, C. Mu, P. Zhou and M. Xiao, Dynamical behaviors of a generalized Lorenz family, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(10) 3707-3720.

    Google Scholar

    [43] F. Zhang, X. Liao and G. Zhang, On the global boundedness of the Lu system, Appl. Math. Comput., 2016, 284, 332-339.

    Google Scholar

    [44] F. Zhang, X. Liao, C. Mu, G. Zhang and Y. Chen, On global boundedness of the Chen system, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(4), 1673-1681.

    Google Scholar

    [45] F. Zhang, X. Liao and G. Zhang, Some new results for the generalized Lorenz system, Qual. Theory Dyn. Syst., 2017, 16(3), 749-759. doi: 10.1007/s12346-016-0206-z

    CrossRef Google Scholar

    [46] F. Zhang, C. Mu and X. Li, On the boundness of some solutions of the Lu system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2012, 22, 1250015. doi: 10.1142/S0218127412500150

    CrossRef Google Scholar

    [47] F. Zhang, C. Mu, S. Zhou and P. Zheng, New results of the ultimate bound on the trajectories of the family of the Lorenz systems, Discrete Contin. Dyn. Syst., Ser. B., 2015, 20(4), 1261-1276. doi: 10.3934/dcdsb.2015.20.1261

    CrossRef Google Scholar

    [48] F. Zhang, G. Yang, Y. Zhang, X. Liao and G. Zhang, Qualitative study of a 4D chaos financial system, Complexity, 2018, 2018, 3789873.

    Google Scholar

    [49] F. Zhang and G. Zhang, Further results on ultimate bound on the trajectories of the Lorenz system, Qual. Theory Dyn. Syst., 2016, 15(1), 221-235. doi: 10.1007/s12346-015-0137-0

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(2473) PDF downloads(460) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint