Citation: | Jibin Li, Yi Zhang, Jianli Liang. BIFURCATIONS AND EXACT TRAVELLING WAVE SOLUTIONS FOR A NEW INTEGRABLE NONLOCAL EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1588-1599. doi: 10.11948/20200319 |
By using the method of dynamical systems, we consider the dynamical behavior of travelling wave solutions for a new integrable nonlocal equation. All possible exact explicit travelling wave solutions under different parameter conditions are given, including solitary wave solutions, periodic wave solutions and pseudo-peakon wave solutions.
[1] | M. J. Ablowitz and Z. H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity, 2016, 29, 915-946. doi: 10.1088/0951-7715/29/3/915 |
[2] | M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math., 2016, 139, 7-59. |
[3] | M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation, Phys. Rev. Lett., 2013, 110, 064105. doi: 10.1103/PhysRevLett.110.064105 |
[4] | M. J. Ablowitz, B. Feng, X. Luo and Z. H. Musslimani, General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions, Nonlinearity, 2017, 31, 5385-6411. |
[5] | P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971. |
[6] | A. S. Fokas, A unifified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. Lond., 1997, A453, 1411-1443. |
[7] | J. Ji and Z. Zhu, On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions, Commun. Nonlinear Sci. Numer. Simul., 2017, 42, 699-708. doi: 10.1016/j.cnsns.2016.06.015 |
[8] | S. Lou and F. Huang, Alice-Bob physics: coherent solutions of nonlocal KdV systems, Sci. Rep., 2017, 7, 869. doi: 10.1038/s41598-017-00844-y |
[9] | J. Lenells and A. S. Fokas, On a novel integrable generalization of the nonlinear Schrödinger equation, Nonlinearity, 2009, 22, 11-27. doi: 10.1088/0951-7715/22/1/002 |
[10] | J. Lenells, Exactly solvable model for nonlinear pulse propagation in optical fibers, Stud. Appl. Math., 2009, 123, 215-232. doi: 10.1111/j.1467-9590.2009.00454.x |
[11] | J. Li, Bifurcations and exact travelling wave solutions for a model of nonlinear pulse propagation in optical fibers, Int. J. Bifurcation and Chaos, 2014, 24, 1450088. doi: 10.1142/S0218127414500886 |
[12] | J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17, 4049-4065. doi: 10.1142/S0218127407019858 |
[13] | J. Li, Y. Zhang and X. Zhao, On a class of singular nonlinear traveling wave equations (Ⅱ): an example of GCKdV equations, Int. J. Bifurcation Chaos, 2009, 19, 1955-2007. |
[14] | J. Li, X. Zhao and G. Chen, On the breaking property for the second class of singular nonlinear traveling wave equations, Int. J. Bifurcation Chaos, 2009, 19, 1289-1306. doi: 10.1142/S0218127409023639 |
[15] | J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013. |
[16] | J. Li and Z. Qiao, Peakon, pseudo-peakon, and cuspon solutions for two generalized Cammasa-Holm equations, J. Math. Phys., 2013, 54, 1-13. |
[17] | Z. Xu and K. W. Chow, Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation, Appl. Math. Lett., 2016, 56, 72-77. doi: 10.1016/j.aml.2015.12.016 |
[18] | J. Yang, General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations, Phys. Lett., 2019, A383, 328-337. |
[19] | Z. Yan, A novel hierarchy of two-family-parameter equations: Local, nonlocal, and mixed-local-nonlocal vector nonlinear Schrödinger equations, Appl. Math. Lett., 2018, 79, 123-130. doi: 10.1016/j.aml.2017.12.007 |
[20] | Z. Yan, Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model, Appl. Math. Lett., 2015, 47, 61-68. doi: 10.1016/j.aml.2015.02.025 |
[21] | Z. Zhou, Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 2018, 42, 480-488. |
[22] | Q. Zhang, Y. Zhang and R. Ye, Exact solutions of nonlocal Fokas-Lenells equation, Appl. Math. Lett., 2019, 98, 336-343. doi: 10.1016/j.aml.2019.05.015 |