2021 Volume 11 Issue 5
Article Contents

E. Azroul, A. Benkirane, N. T. Chung, M. Shimi. EXISTENCE RESULTS FOR ANISOTROPIC FRACTIONAL (p1(x, .), p2(x, .))-KIRCHHOFF TYPE PROBLEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2363-2386. doi: 10.11948/20200394
Citation: E. Azroul, A. Benkirane, N. T. Chung, M. Shimi. EXISTENCE RESULTS FOR ANISOTROPIC FRACTIONAL (p1(x, .), p2(x, .))-KIRCHHOFF TYPE PROBLEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2363-2386. doi: 10.11948/20200394

EXISTENCE RESULTS FOR ANISOTROPIC FRACTIONAL (p1(x, .), p2(x, .))-KIRCHHOFF TYPE PROBLEMS

  • In this paper, we investigate the existence and multiplicity of solutions for a class of fractional $ (p_1(x,.),p_2(x,.)) $-Kirchhoff type problems with Dirichlet boundary data of the following form

    $ \left( \mathcal{P}_{M_i}^s\right) \; \; \left\{ \begin{array}{lllll} \sum\limits_{i = 1}^{2} M_i \left(\int_{Q}\frac{1}{p_i(x,y)}\frac{|u(x)-u(y)|^{p_i(x,y)}}{|x-y|^{N+sp_i(x,y)}}\; dxdy\right) \left( -\Delta\right)_{p_i(x,.)} ^{s}u(x)\\+\sum\limits_{i = 1}^{2}|u|^{\bar{p}_i(x)-2}u = f(x,u)\quad\rm{in}\; \; \Omega,\\ u = 0 \quad \quad\rm{in}\; \; \; \mathbb{R}^{N}\setminus\Omega. \end{array}\right. $

    More precisely, by means of mountain pass theorem with Cerami condition, we show that the above problem has at least one nontrivial solution. Moreover, using Fountain theorem, we prove that $ \left( \mathcal{P}_{M_i}^s\right) $ possesses infinitely many (pairs) of solutions with unbounded energy.

    MSC: 35R11, 47G20, 35S15, 35A15
  • 加载中
  • [1] G. A. Afrouzi, M. Mirzapour and N. T. Chung, Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation, Rend. Semin. Mat. Univ. Padova, 2016, 136, 95-109, https://doi.org/10.4171/RSMUP/136-8. doi: 10.4171/RSMUP/136-8

    CrossRef Google Scholar

    [2] K. B. Ali, M. Hsini, K. Kefi and N. T. Chung, On a Nonlocal Fractional p(., . )-Laplacian Problem with Competing Nonlinearities, Complex Analysis and Operator Theory, 2019, 13(3), 1377-1399, https://doi.org/10.1007/s11785-018-00885-9. doi: 10.1007/s11785-018-00885-9

    CrossRef Google Scholar

    [3] M. Allaoui and O. Darhouche, Existence results for a class of nonlocal problems involving the(p1(x), p2(x))-Laplace operator, Complex Var. Elliptic Equ., 2018, 63(1), 76-89, https://doi.org/10.1080/17476933.2017.1282950. doi: 10.1080/17476933.2017.1282950

    CrossRef Google Scholar

    [4] S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows, Annali Dell' Università Di Ferrara, 2006, 52(1), 19-36, https://doi.org/10.1007/s11565-006-0002-9. doi: 10.1007/s11565-006-0002-9

    CrossRef Google Scholar

    [5] D. Applebaum, Lévy processes-from probability to fnance quantum groups, Not. Am. Math. Soc., 2004, 51, 1336-1347 http://www.ams.org/notices/200411/fea-applebaum.pdf.

    Google Scholar

    [6] E. Azroul and A. Boumazourh, On a class of fractional systems with nonstandard growth conditions, J. Pseudo-Differ. Oper. Appl., 2019, https://doi.org/10.1007/s11868-019-00310-5. doi: 10.1007/s11868-019-00310-5

    CrossRef Google Scholar

    [7] E. Azroul, A. Benkirane and M. Shimi, Existence and Multiplicity of solutions for fractional p(x, . )-Kirchhoff type problems in ${{\mathbb{R}}^{N}}$, Applicable Analysis, 2019, https://doi.org/10.1080/00036811.2019.1673373.

    ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [8] E. Azroul, A. Benkirane and M. Shimi, General fractional Sobolev space with variable exponent and applications to nonlocal problems, Advances in Operator Theory, 2020, 5(4), 1512-1540, https://doi.org/10.1007/s43036-020-00062-w. doi: 10.1007/s43036-020-00062-w

    CrossRef Google Scholar

    [9] E. Azroul, A. Benkirane and M. Shimi, Eigenvalue problems involving the fractional p(x)-Laplacian operator. Adv. Oper. Theory, 2019, 4(2), 539-555, https://doi.org/10.15352/aot.1809-1420. doi: 10.15352/aot.1809-1420

    CrossRef Google Scholar

    [10] E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional p(x)-Kirchhoff type problems, J. Applicable Analysis, 2021, 100(2), 383-402, https://doi.org/10.1080/00036811.2019.1603372. doi: 10.1080/00036811.2019.1603372

    CrossRef Google Scholar

    [11] E. Azroul, A. Benkirane, A. Boumazourh and M. Shimi, Existence results for fractional p(x, . )-Laplacian problem via the Nehari manifold approach, Applied Mathematics and Optimization, 2020, https://doi.org/10.1007/s00245-020-09686-z. doi: 10.1007/s00245-020-09686-z

    CrossRef Google Scholar

    [12] E. Azroul, A. Benkirane and M. Shimi, On a nonlocal problem involving the fractional p(x, . )-Laplacian satisfying Cerami condition, J. Discrete and Continuous Dynamical Systems Series S, 2020, doi: http://www.aimsciences.org/article/doi/10.3934/dcdss.2020425.

    CrossRef Google Scholar

    [13] E. Azroul and M. Shimi, Nonlocal eigenvalue problems with variable exponent, Moroccan J. of Pure and Appl. Anal., 2018, 4(1), 46-61, https://doi.org/10.1515/mjpaa-2018-0006. doi: 10.1515/mjpaa-2018-0006

    CrossRef Google Scholar

    [14] A. Bahrouni and V. Rădulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst., 2018, 11, 379-389, https://doi.org/10.3934/dcdss.2018021. doi: 10.3934/dcdss.2018021

    CrossRef Google Scholar

    [15] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 1983, 7(9), 981-1012, https://doi.org/10.1016/0362-546X(83)90115-3. doi: 10.1016/0362-546X(83)90115-3

    CrossRef Google Scholar

    [16] G. M. Bisci, V. Rădulescu and R. Servadi, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, 2016, http://hdl.handle.net/11576/2664250.

    Google Scholar

    [17] L. M. M. Bonaldo, E. J. Hurtado and O. H. Miyagaki, A class of elliptic equations involving nonlocal integrodifferential operators with sign-changing weight functions, J. Math. Phys., 2020, 61, 051503, https://doi.org/10.1063/1.514515. doi: 10.1063/1.5145154

    CrossRef Google Scholar

    [18] L. Caffarelli, Nonlocal diffusions, drifts and games, Nonlinear Partial Differential Equations, 2012, 7, 37-52, https://doi.org/10.1007/978-3-642-25361-4_3. doi: 10.1007/978-3-642-25361-4_3

    CrossRef Google Scholar

    [19] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 2006, 66, 1383-1406, https://doi.org/10.1137/050624522. doi: 10.1137/050624522

    CrossRef Google Scholar

    [20] G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978, 112, 332-336, https://ci.nii.ac.jp/naid/10006654437/#cit.

    Google Scholar

    [21] N. T. Chung, Multiple solutions for a class of (p1(x), p2(x))-Laplacian problems with Neumann boundary conditions, Acta Universitatis Apulensis, 2018, 56, 125-141, https://doi.org/10.17114/j.aua.2018.56.11.

    Google Scholar

    [22] N. T. Chung, Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities, Electronic Journal of Qualitative Theory of Differential Equations, 2012, 42, 1-13 https://doi.org/10.14232/ejqtde.2012.1.42.

    Google Scholar

    [23] N. T. Chung and H. Q. Toan, On a class of fractional Laplacian problems with variable exponents and indefinite weights, Collectanea Mathematica, 2019, 1-15, https://doi.org/10.1007/s13348-019-00254-5.

    Google Scholar

    [24] L. Diening, P. Harjulehto, P. Hästö and M. Råžička, Lebesgue and Sobolev Spaces with Variable Exponents, Exponents, Lecture notes in Mathematics, 1st Edition, 2017, https://doi.org/10.1007/978-3-642-18363-8. doi: 10.1007/978-3-642-18363-8

    CrossRef Google Scholar

    [25] X. Fan and D. Zhao, On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω), J. Math. Anal. Appl., 2001 263, 424-446 https://doi.org/10.1006/jmaa.2000.7617. doi: 10.1006/jmaa.2000.7617

    CrossRef Google Scholar

    [26] J. Francå, Monotone operators. A survey directed to applications to differential equations, Aplikace matematiky, 1990, 35(4), 257-301, http://dml.cz/dmlcz/104411.

    Google Scholar

    [27] T. C. Halsey, Electrorheological fluids, Science, 1992, 258(5083), 761-766, https://doi.org/10.1126/science.258.5083.761. doi: 10.1126/science.258.5083.761

    CrossRef Google Scholar

    [28] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to Landesman-lazer type problem set on ${{\mathbb{R}}^{N}}$, Proc. Roy. Soc. Edinburgh Sect. A., 1999, 129, 787-809, https://doi.org/10.1017/S0308210500013147. doi: 10.1017/S0308210500013147

    CrossRef ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [29] U. Kaufmann, J. D. Rossi and R. Vidal, Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians, Elec. Jour. of Qual. Th, of Diff. Equa., 2017, 76, 1-10, https://doi.org/10.14232/ejqtde.2017.1.76.

    Google Scholar

    [30] O. Kováčik and J. Rákosník, On Spaces Lp(x)(Ω) and Wm, p(x)(Ω), Czechoslovak Math. Jour., 1991, 41(4), 592-618, https://dml.cz/handle/10338.dmlcz/102493. doi: 10.21136/CMJ.1991.102493

    CrossRef Google Scholar

    [31] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A., 2000, 268, 298-305, https://doi.org/10.1016/S0375-9601(00)00201-2. doi: 10.1016/S0375-9601(00)00201-2

    CrossRef Google Scholar

    [32] J. I. Lee, J. M. Kim, Y. H. Kim and J. Lee, Multiplicity of weak solutions to non-local elliptic equations involving the fractional p(x)-Laplacian, J. Math. Phys., 2020, 61, 011505, https://doi.org/10.1063/1.5111786. doi: 10.1063/1.5111786

    CrossRef Google Scholar

    [33] D. Liu, X. Wang and J. Yao, On (p1(x), p2(x))-Laplace equations, 2012, http://arxiv.org/pdf/1205.1854.pdf.

    Google Scholar

    [34] O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 2008, 245, 3628-3638, https://doi.org/10.1016/j.jde.2008.02.035. doi: 10.1016/j.jde.2008.02.035

    CrossRef Google Scholar

    [35] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 2012 136(5), 521-573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [36] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Teory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000, https://doi.org/10.1007/BFb0104029. doi: 10.1007/BFb0104029

    CrossRef Google Scholar

    [37] Z. Yucedag, Infinitely many nontrivial solutions for nonlinear problem involving (p1(x), p2(x))-Laplace operator, Acta Univer. Apulensis, 2014, 40, 315-331, https://doi.org/10.17114/j.aua.2014.40.26. doi: 10.17114/j.aua.2014.40.26

    CrossRef Google Scholar

    [38] A. Zang, p(x)-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 2008, 337, 547-555, https://doi.org/10.1016/j.jmaa.2007.04.007. doi: 10.1016/j.jmaa.2007.04.007

    CrossRef Google Scholar

    [39] J. Zhao, Structure theory of Banach spaces, Wuhan Univ. Press, Wuhan, 1991.

    Google Scholar

    [40] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 1987, 9, 33-66, https://doi.org/10.1070/IM1987v029n01ABEH000958. doi: 10.1070/IM1987v029n01ABEH000958

    CrossRef Google Scholar

    [41] W. Zou, Variant Fountain theorems and their applications, Manuscripta Math., 2001, 104, 343-358, https://doi.org/10.1007/s002290170032. doi: 10.1007/s002290170032

    CrossRef Google Scholar

Article Metrics

Article views(2473) PDF downloads(378) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint