2021 Volume 11 Issue 6
Article Contents

Guomei Zhao, Rong An. OPTIMAL ERROR ANALYSIS OF PARTIALLY-UPDATED PROJECTION FEM SCHEME FOR THE LANDAU-LIFSHITZ EQUATION BASED ON THE CRANK-NICOLSON DISCRETIZATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3115-3132. doi: 10.11948/20210193
Citation: Guomei Zhao, Rong An. OPTIMAL ERROR ANALYSIS OF PARTIALLY-UPDATED PROJECTION FEM SCHEME FOR THE LANDAU-LIFSHITZ EQUATION BASED ON THE CRANK-NICOLSON DISCRETIZATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3115-3132. doi: 10.11948/20210193

OPTIMAL ERROR ANALYSIS OF PARTIALLY-UPDATED PROJECTION FEM SCHEME FOR THE LANDAU-LIFSHITZ EQUATION BASED ON THE CRANK-NICOLSON DISCRETIZATION

  • Corresponding author: Email: anrong@wzu.edu.cn(R. An)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11771337)
  • This paper presents a Crank-Nicolson partially-updated projection finite element scheme for the numerical approximation of the Landau-Lifshitz equation which describes the dynamics of magnetization in ferromagnetic materials and is a strongly nonlinear parabolic problem with the non-convex constraint. The proposed scheme is a semi-implicit scheme by using the extrapolation technique and the implicit-explicit method to linearize the nonlinear terms. Furthermore, the sphere projection is used to preserve the unit length such that numerical solutions satisfy the non-convex constraint exactly. The optimal second-order convergence rate in time and space is derived under the reasonable time step condition. Finally, the numerical experiment is presented to confirm the theoretical result.

    MSC: 65N12, 65N30, 35K61
  • 加载中
  • [1] F. Alouges, A new finite element scheme for Landau-Lifshitz equations, Discrete and Continuous Dynamical Systems-Series S, 2008, 1, 187-196. doi: 10.3934/dcdss.2008.1.187

    CrossRef Google Scholar

    [2] F. Alouges and P. Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism, Math. Models Methods Appl. Sci., 2006, 16, 299-316. doi: 10.1142/S0218202506001169

    CrossRef Google Scholar

    [3] R. An, Optimal Error Estimates of Linearized Crank-Nicolson Galerkin Method for Landau-Lifshitz Equation, Journal of Scientific Computing, 2016, 69(1), 1-27. doi: 10.1007/s10915-016-0181-1

    CrossRef Google Scholar

    [4] R. An and B. Chen, Partially-updated projection finite element method for Landau-Lifshitz equation, submitted, 2021.

    Google Scholar

    [5] R. An, H. Gao and W. Sun, Optimal error analysis of Euler and Crank-Nicolson projection schemes for Landau-Lifshitz equation, SIAM J. Numer. Anal., 2021, 59, 1639-1662. doi: 10.1137/20M1335431

    CrossRef Google Scholar

    [6] R. An and W. Sun, Analysis of projection FEM for the Landau-Lifshitz equation, IMA J. Numer. Anal., 2021, DOI: doi.org/10.1093/imanum/drab038.

    Google Scholar

    [7] S. Bartels, Projection-free approximation of geometrically constrainted partial differential equations, Math. Comp., 2016, 85, 1033-1049.

    Google Scholar

    [8] S. Bartels, J. Ko and A. Prohl, Numerical anaysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation, Math. Comput., 2008, 77, 773-788.

    Google Scholar

    [9] S. Bartels, C. Lubich and A. Prhol, Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers, Math. Comput., 2009, 78, 1269-1292. doi: 10.1090/S0025-5718-09-02221-2

    CrossRef Google Scholar

    [10] S. Bartels and A. Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 2006, 44, 1405-1419. doi: 10.1137/050631070

    CrossRef Google Scholar

    [11] S. Brenner and L. Scott, The mathematical theory of finite element methods, Springer, 1994.

    Google Scholar

    [12] J. Chen, J. Liu and Z. Zhou, On a Schrödinger-Landau-Lifshitz system: variational structure and numerical methods, Multiscale Model. Simul., 2016, 14, 1463-1487. doi: 10.1137/16M106947X

    CrossRef Google Scholar

    [13] J. Chen, C. Wang and C. Xie, Convergence analysis of a second-order semi-implicit projection method for Landau-Lifshitz equation, Appl. Numer. Math., 2021, 168, 55-74. doi: 10.1016/j.apnum.2021.05.027

    CrossRef Google Scholar

    [14] K. Cheng and C. Wang, Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 2016, 54, 3123-3144. doi: 10.1137/16M1061588

    CrossRef Google Scholar

    [15] K. Cheng, C. Wang, S. M. Wise and X. Yue, A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method, J. Sci. Comput., 2016, 69, 1083-1114. doi: 10.1007/s10915-016-0228-3

    CrossRef Google Scholar

    [16] I. Cimrák, Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field, IMA J. Numer. Anal., 2005, 25, 611-634. doi: 10.1093/imanum/dri011

    CrossRef Google Scholar

    [17] I. Cimrák, A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism, Arch. Comput. Methods Eng., 2008, 15, 277-309. doi: 10.1007/s11831-008-9021-2

    CrossRef Google Scholar

    [18] I. Cimrák, Convergence result for the constraint preserving mid-point scheme for micromagnetism, Journal of Computational and Applied Mathematics, 2009, 228, 238-246. doi: 10.1016/j.cam.2008.09.017

    CrossRef Google Scholar

    [19] A. E. Diegel, C. Wang and S. M. Wise, Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation, IMA J. Numer. Anal., 2016, 36, 1867-1897. doi: 10.1093/imanum/drv065

    CrossRef Google Scholar

    [20] W. N. E and X. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 2000, 38, 1647-1665. doi: 10.1137/S0036142999352199

    CrossRef Google Scholar

    [21] H. Gao, Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 2014, 52, 2574-2593. doi: 10.1137/130936476

    CrossRef Google Scholar

    [22] H. Gao, B. Li and W. Sun, Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity, SIAM J. Numer. Anal., 2014, 52, 1183-1202. doi: 10.1137/130918678

    CrossRef Google Scholar

    [23] T. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization field, Phys. Rev., 1955, 100, 1243-1255.

    Google Scholar

    [24] S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation, J. Sci. Comput., 2012, 53, 102-128. doi: 10.1007/s10915-012-9621-8

    CrossRef Google Scholar

    [25] J. Guo, C. Wang, S. M. Wise and X. Yue, An $H.2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation, Commun. Math. Sci., 2016, 14, 489-515. doi: 10.4310/CMS.2016.v14.n2.a8

    CrossRef $H.2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation" target="_blank">Google Scholar

    [26] J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem Part IV: error analysis for second-order time discretization, SIAM J. Numer. Anal., 1990, 27, 353-384. doi: 10.1137/0727022

    CrossRef Google Scholar

    [27] E. Kim and K. Lipnikov, The mimetic finite difference method for the Landau-Lifshitz equation, Journal of Computational Physics, 2017, 328, 109-130. doi: 10.1016/j.jcp.2016.10.016

    CrossRef Google Scholar

    [28] M. Kruzík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism, SIAM Review., 2006, 48, 439-483. doi: 10.1137/S0036144504446187

    CrossRef Google Scholar

    [29] L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zeitsch. der Sow., 1935, 8, 153-169.

    Google Scholar

    [30] B. Li, H. Gao and W. Sun, Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations, SIAM J. Numer. Anal., 2014, 52, 933-954. doi: 10.1137/120892465

    CrossRef Google Scholar

    [31] B. Li and W. Sun, Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations, Inter. J. Numer. Anal. Model., 2013, 10, 622-633.

    Google Scholar

    [32] B. Li and W. Sun, Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal., 2013, 51, 1959-1977. doi: 10.1137/120871821

    CrossRef Google Scholar

    [33] P. Monk and O. Vacus, Error estimates for a numerical scheme for ferromagnetic problems, SIAM J. Numer. Anal., 1999, 36, 696-718. doi: 10.1137/S0036142997324228

    CrossRef Google Scholar

    [34] F. Pistella and V. Valente, Numerical stability of a discrete model in the dynamics of ferromagnetic bodies, Numer. Methods Partial Differential Equations, 1999, 15, 544-557. doi: 10.1002/(SICI)1098-2426(199909)15:5<544::AID-NUM2>3.0.CO;2-Q

    CrossRef Google Scholar

    [35] A. Prohl, Computational Micromagnetism, Teubner, Stuttgart, 2001.

    Google Scholar

    [36] C. Serpico, I. Mayergoyz and G. Bertotti, Numerical technique for integration of the Landau-Lifshitz equation, J. App. Phys., 2001, 89, 6991-6993. doi: 10.1063/1.1358818

    CrossRef Google Scholar

    [37] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer, 2006.

    Google Scholar

    [38] X. Wang, C. J. García-Cervera and W. N. E, A Gauss-Seidel projection method for micromagnetics simulations, Journal of Computational Physics, 2001, 171, 357-372.

    Google Scholar

    [39] C. Xie, C. J. García-Cervera, C. Wang, Z. Zhou and J. Chen, Second-order semi-implicit projection methods for micromagnetics simulations, J. Comput. Phys., 2020, 404, 109104. doi: 10.1016/j.jcp.2019.109104

    CrossRef Google Scholar

Tables(1)

Article Metrics

Article views(1824) PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint