2021 Volume 11 Issue 6
Article Contents

Na Liu. INVARIANT MANIFOLDS FOR THE NONAUTONOMOUS BOISSONADE SYSTEM IN THREE-DIMENSIONAL TORUS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3133-3156. doi: 10.11948/20210321
Citation: Na Liu. INVARIANT MANIFOLDS FOR THE NONAUTONOMOUS BOISSONADE SYSTEM IN THREE-DIMENSIONAL TORUS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3133-3156. doi: 10.11948/20210321

INVARIANT MANIFOLDS FOR THE NONAUTONOMOUS BOISSONADE SYSTEM IN THREE-DIMENSIONAL TORUS

  • We undertake a study of invariant manifolds for the nonautonomous Boissonade system in three-dimensional torus. The system, exhibiting Turing structures, is a activator-inhibitor model for describing the relation between the genuine homogeneous 2D systems and the 3D monolayers. Assuming the diffusivity of the activator be sufficiently large, we prove the existence of a finite-dimensional Lipschitz manifold. The manifold is locally forward invariant and pullback attracts exponentially only those solutions with initial values having a certain regularity. If more assumptions on the external forces are made such that the symbol space is compact, we prove that the manifold is of global type.

    MSC: 35B42, 37B55, 37D10
  • 加载中
  • [1] A. V. Babin, Inertial manifolds for travelling-wave solutions of reaction-diffusion systems, Comm. Pure Appl. Math., 1995, 48(2), 167-198. doi: 10.1002/cpa.3160480205

    CrossRef Google Scholar

    [2] P. W. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in Banach space, Mem. Amer. Math. Soc., 1998, 135(645), 1-132.

    Google Scholar

    [3] A. Bonfoh, Existence and continuity of inertial manifolds for the hyperbolic relaxation of the viscous Cahn-Hilliard equation, Appl. Math. Optim., 2021, 84(3), 3339-3416. doi: 10.1007/s00245-021-09749-9

    CrossRef Google Scholar

    [4] H. Brezis, O$\acute{p}$erateurs Maximaux Monotones et Semigroupes de Contractions dans un Espace de Hilbert, North-Holland Pub. Co., Amsterdam, 1973.

    Google Scholar

    [5] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.

    Google Scholar

    [6] V. V. Chepyzhov, A. Kostianko and S. Zelik, Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(3), 1115-1142.

    Google Scholar

    [7] S. N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations, 1988, 74(2), 285-317. doi: 10.1016/0022-0396(88)90007-1

    CrossRef Google Scholar

    [8] V. Dufiet and J. Boissonade, Dynamics of Turing pattern monolayers close to onset, Phys. Rev. E, 1996, 53(5), 4883-4892. doi: 10.1103/PhysRevE.53.4883

    CrossRef Google Scholar

    [9] C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 1988, 73(2), 309-353. doi: 10.1016/0022-0396(88)90110-6

    CrossRef Google Scholar

    [10] M. Abu Hamed, Y. Guo and E. S. Titi, Inertial manifolds for certain subgrid-scale $\alpha$-models of turbulence, SIAM J. Appl. Dyn. Syst., 2015, 14(3), 1308-1325. doi: 10.1137/140987833

    CrossRef Google Scholar

    [11] J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France, 1901, 29, 224-228.

    Google Scholar

    [12] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1981.

    Google Scholar

    [13] J. Jin, Z. Lin and C. Zeng, Invariant manifolds of traveling waves of the 3D Gross-Pitaevskii equation in the energy space, Comm. Math. Phys., 2018, 364(3), 981-1039. doi: 10.1007/s00220-018-3189-6

    CrossRef Google Scholar

    [14] R. Kapral and K. Showalter, Chemical Waves and Patterns, Springer Netherlands, Heidelberg, 1995.

    Google Scholar

    [15] T. Kojima and Y. Oshita, Linear stability of radially symmetric equilibrium solutions to the singular limit problem of three-component activator-inhibitor model, Math. J. Okayama Univ., 2021, 63, 201-217.

    Google Scholar

    [16] N. Koksch and S. Siegmund, Pullback attracting inertial manifolds for nonautonomous dynamical systems, J. Dynam. Differential Equations, 2002, 14(4), 889-941. doi: 10.1023/A:1020768711975

    CrossRef Google Scholar

    [17] A. Kostianko, Inertial manifolds for the 3D modified-Leray-$\alpha$ model with periodic boundary conditions, J. Dynam. Differential Equations, 2018, 30(1), 1-24. doi: 10.1007/s10884-017-9635-x

    CrossRef Google Scholar

    [18] M. Kwak and X. X. Sun, Remarks on the existence of an inertial manifold, J. Korean Math. Soc., 2021, 58(5), 1261-1277.

    Google Scholar

    [19] Y. Latushkin and B. Layton, The optimal gap condition for invariant manifolds, Discrete Contin. Dynam. Systems, 1999, 5(2), 233-268. doi: 10.3934/dcds.1999.5.233

    CrossRef Google Scholar

    [20] A. M. Le, Inertial manifolds for neutral functional differential equations with infinite delay and applications, Ann. Polon. Math., 2020, 125(3), 255-271. doi: 10.4064/ap191219-29-5

    CrossRef Google Scholar

    [21] N. Liu, Global finite-dimensional invariant manifolds of the Boissonade system, submitted.

    Google Scholar

    [22] K. Lu, R. N. Wang and J. C. Zhao, Invariant manifolds of the generalized phase-field systems, submitted.

    Google Scholar

    [23] A. M. Lyapunov, Probl$\grave{e}$me G$\acute{e}$n$\acute{e}$ral de la Stabilit$\acute{e}$ du Mouvement, Oxford University Press, London, 1947.

    Google Scholar

    [24] J. Mallet-Paret and G. R. Sell, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1988, 1(4), 805-866.

    Google Scholar

    [25] X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Contributions to nonlinear partial differential equations, Vol. Ⅱ (Paris, 1985), 172-183, Pitman Res. Notes Math. Ser., 155, Longman Sci. Tech., Harlow, 1987.

    Google Scholar

    [26] J. D. Murry, Mathematical Biology. I. An introduction, Springer-Verlag, New York, 2002.

    Google Scholar

    [27] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 1930, 32(1), 703-728. doi: 10.1007/BF01194662

    CrossRef Google Scholar

    [28] O. Perron, Über Stabilität und asymptotisches verhalten der integrale von differentialgleichungssystemen, Math. Z., 1929, 29, 129-160. doi: 10.1007/BF01180524

    CrossRef Google Scholar

    [29] O. Perron, Über Stabilität und asymptotisches verhalten der lösungen eines systems endlicher differenzengleichungen, J. Reine Angew. Math., 1929, 161, 41-64.

    Google Scholar

    [30] J. C. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.

    Google Scholar

    [31] S. I. Rubinow, Introduction to Mathematical Biology, John Wiley, New York, 1975.

    Google Scholar

    [32] G. R. Sell and Y. You, Inertial manifolds: the non-selfadjoint case, J. Differential Equations, 1992, 96(2), 203-255. doi: 10.1016/0022-0396(92)90152-D

    CrossRef Google Scholar

    [33] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

    Google Scholar

    [34] J. Tu, Global attractors and robustness of the Boissonade system, J. Dynam. Differential Equations, 2015, 27(1), 187-211. doi: 10.1007/s10884-014-9396-8

    CrossRef Google Scholar

    [35] R. N. Wang, J. H. Wu and J. C. Zhao, Theory of invariant manifolds for infinite dimensional nonautonomous dynamical systems and applications, submitted.

    Google Scholar

    [36] S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 2014, 144(6), 1245-1327. doi: 10.1017/S0308210513000073

    CrossRef Google Scholar

    [37] J. C. Zhao and R. N. Wang, The invariant manifold approach applied to global long-time dynamics of Fitzhugh-Nagumo systems, submitted.

    Google Scholar

Article Metrics

Article views(1511) PDF downloads(301) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint