2023 Volume 13 Issue 1
Article Contents

Narayan Mondal, Dipesh Barman, Jyotirmoy Roy, Shariful Alam, Mohammad Sajid. A MODIFIED LESLIE-GOWER FRACTIONAL ORDER PREY-PREDATOR INTERACTION MODEL INCORPORATING THE EFFECT OF FEAR ON PREY[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 198-232. doi: 10.11948/20220011
Citation: Narayan Mondal, Dipesh Barman, Jyotirmoy Roy, Shariful Alam, Mohammad Sajid. A MODIFIED LESLIE-GOWER FRACTIONAL ORDER PREY-PREDATOR INTERACTION MODEL INCORPORATING THE EFFECT OF FEAR ON PREY[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 198-232. doi: 10.11948/20220011

A MODIFIED LESLIE-GOWER FRACTIONAL ORDER PREY-PREDATOR INTERACTION MODEL INCORPORATING THE EFFECT OF FEAR ON PREY

  • In this article, a Leslie-Gower type predator prey model with fear effect has been proposed and studied in the framework of fractional calculus in Caputo sense. The well-posedness of the system has been verified analytically. The states of stability of the possible non-negative equilibrium points have been derived. It is observed that both the fear level and memory bound of the interacting species take crucial part in determining the states of stability of the system dynamics around the co-existence equilibrium point. The fear level makes the system stable around the positive equilibrium point via two consecutive Hopf bifurcations. The higher memory of the interacting species leads to stabilization of the ecological model system whether fading memory has destabilization role in the system dynamics. The analytical representations of the bifurcation scenarios have been rigorously analyzed. Also, it has been observed that the corresponding integer order model system may experience saddle-node bifurcation depending upon the change of suitable parameter. All our observations have been captured in numerical simulation portion and detailed explanations of the outcomes of the numerical simulation have been represented.

    MSC: 92D25, 92D40, 37N25
  • 加载中
  • [1] S. Alam, Risk of disease-selective predation in an infected prey-predator system, Journal of Biological Systems, 2009, 17(1), 111–124. doi: 10.1142/S0218339009002703

    CrossRef Google Scholar

    [2] M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling-type Ⅱ schemes, Appl. Math. Lett., 2003, 16, 1069–1075. doi: 10.1016/S0893-9659(03)90096-6

    CrossRef Google Scholar

    [3] A. Altan and R. Hacıoglu˘, Model predictive control of three-axis gimbal system mounted on uav for real-time target tracking under external disturbances, Mech. Syst. Signal Process, 2020, 138. DOI: 10.1016/j.ymssp.2019.106548.

    CrossRef Google Scholar

    [4] A. Altan, S. Karasu and S. Bekiros, Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques, Chaos, Solitons & Fractals, 2019, 126, 325–336.

    Google Scholar

    [5] E. Ahmed, A. El-Sayed and H. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl., 2007, 325(1), 542–553. doi: 10.1016/j.jmaa.2006.01.087

    CrossRef Google Scholar

    [6] A. Atangana and A. Secer, A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstract and applied analysis, Hindawi. Doi: 101155/2013/279681(2013).

    Google Scholar

    [7] J. Alidousti and E. Ghafari, Dynamic behavior of a fractional order prey-predator model with group defense, Chaos, Solitons & Fractals, 2020, 134, 109688. Doi: 10.1016/j.chaos.2020.109688.

    CrossRef Google Scholar

    [8] M. M. Amirian, I. Towers, Z. Jovanoski and A. J. Irwin, Memory and mutualism in species sustainability: A time-fractional Lotka-Volterra model with harvesting, Heliyon, 2020, 6(9). Doi: 10.1016/j.heliyon.2020.e04816.

    CrossRef Google Scholar

    [9] D. Baleanu, A. Jajarmi, S. S. Sajjadi and J. H. Asad, The fractional features of a harmonic oscillator with position-dependent mass, Commun. Th. Phys., 2020, 72(5), 055002. Doi: 10.1088/1572-9494/ab7700.

    CrossRef Google Scholar

    [10] D. Barman, J. Roy, H. Alrabaiah, P. Panja, S. P. Mondal and S. Alam, Impact of predator incited fear and prey refuge in a fractional order prey predator model, Chaos, Solitons and Fractals, 2020, 142(1). DOI: 10.1016/j.chaos.2020.110420.

    CrossRef Google Scholar

    [11] D. Barman, J. Roy and S. Alam, Dynamical scenario of an Infected Predator-Prey Model with Fear Effect, Iranian Journal of Science and Technology, Transactions A: Science, 2020, 45(5721). DOI: 10.1007/s40995-020-01014-y.

    CrossRef Google Scholar

    [12] D. Barman, J. Roy and S. Alam, Trade-off between fear level induced by predator and infection rate among prey species, Journal of Applied Mathematics and Computing, 2020, 1–29. Doi: org/10.1007/s12190-020-01372-1.

    CrossRef Google Scholar

    [13] A. A. Berryman, The origins and evolution of predator-prey theory, Ecology, 1992, 75, 1530–1535.

    Google Scholar

    [14] F. Chen, L. Chen and X. Xie, On a Leslie–Gower predator–prey model incorporating a prey refuge, Nonlinear Anal Real World Appl, 2009, 10(5), 2905–2908. DOI: 10.1016/j.nonrwa.2008.09.009.

    CrossRef Google Scholar

    [15] C. W. Clark, Mathematical models in the economics of renewable resources, SIAM Rev., 1979, 21, 81–99. doi: 10.1137/1021006

    CrossRef Google Scholar

    [16] W. Cresswell, Predation in bird populations, J. Ornithol, 2011, 152, 251–263. doi: 10.1007/s10336-010-0638-1

    CrossRef Google Scholar

    [17] S. Creel and D. Christianson, Relationships between direct predation and risk effects, Trends Ecol. Evolut., 2008, 23, 194–201. doi: 10.1016/j.tree.2007.12.004

    CrossRef Google Scholar

    [18] S. Creel, D. Christianson, S. Liley and J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 2007, 315(5814), 960. DOI: 10.1126/science.1135918(2007).

    CrossRef Google Scholar

    [19] T. Das, R. N. Mukherjee and K. S. Chaudhari, Bioeconomic harvesting of a prey–predator fishery, J. Biol. Dyn., 2009, 3, 447–462. doi: 10.1080/17513750802560346

    CrossRef Google Scholar

    [20] Y. Du, R. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator–prey model, J. Differ. Equ., 2009, 246, 3932–3956. doi: 10.1016/j.jde.2008.11.007

    CrossRef Google Scholar

    [21] V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg and D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Ann. Biomed Eng., 2003, 31(6), 692–699. doi: 10.1114/1.1574026

    CrossRef Google Scholar

    [22] A. Dokoumetzidis, R. Magin and P. Macheras, A commentary on fractionalization of multi-compartmental models, Journal of pharmacokinetics and pharmacodynamics, 2010, 37(2), 203–207. doi: 10.1007/s10928-010-9153-5

    CrossRef Google Scholar

    [23] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.

    Google Scholar

    [24] R. P. Gupta and P. Chandra, Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting, J. Math. Anal. Appl., 2013, 398, 278–295. doi: 10.1016/j.jmaa.2012.08.057

    CrossRef Google Scholar

    [25] A. Jajarmi and D. Baleanu, A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems, Front. Phys., 2020, 8, 220. Doi: 10.3389/fphy.2020.00220.

    CrossRef Google Scholar

    [26] Q. Khan, E. Balakrishnan and G. Wake, Analysis of a predator-prey system with predator switching, Bull. Math. Biol., 2004, 66(1), 109–23. doi: 10.1016/j.bulm.2003.08.005

    CrossRef Google Scholar

    [27] S. Khajanchi, Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function, Applied Mathematics and Computation, 2017, 302(1), 122–143. https://doi.org/10.1016/j.amc.2017.01.019. doi: 10.3969/j.issn.1006-6330.2017.01.012

    CrossRef Google Scholar

    [28] S. Khajanchi and S. Banerjee, Role of constant prey refuge on stage structure predator–prey model with ratio dependent functional response, Applied Mathematics and Computation, 2017, 314, 193–198. Doi. org/10.1016/j. amc. 2017.07.017. doi: 10.1016/j.amc.2017.07.017

    CrossRef Google Scholar

    [29] S. Khajanchi, Dynamic behavior of a Beddington–DeAngelis type stage structured predator–prey model, Applied Mathematics and Computation, 2014, 244, 344–360. Doi: org/10.1016/j.amc.2014.06.109.

    CrossRef Google Scholar

    [30] L. Kexue and P. Jigen, Laplace transform and fractional differential equations, Applied Mathematics Letters, 2011, 24(12), 2019–2023. doi: 10.1016/j.aml.2011.05.035

    CrossRef Google Scholar

    [31] S. Liang, R. Wu and L. Chen, Laplace transform of fractional order differential equations, Electron. J. Differ. Equ., 2015, 139, 1–15.

    Google Scholar

    [32] Y. Li, Y. Chen and I. Podlubny, Mittag–leffer stability of fractional order nonlinear dynamic systems, Automatica, 2009, 45(8), 1965–1969. doi: 10.1016/j.automatica.2009.04.003

    CrossRef Google Scholar

    [33] S. Liu and E. Beretta, A stage-structured predator-prey model of beddington-deangelis type, SIAM J. Appl. Math., 2006, 66(4), 1101–1129. doi: 10.1137/050630003

    CrossRef Google Scholar

    [34] P. H. Leslie, A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 1958, 45, 16–31. doi: 10.1093/biomet/45.1-2.16

    CrossRef Google Scholar

    [35] P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator–prey type of interaction between two species, BiometriKa, 1960, 47, 219–234. doi: 10.1093/biomet/47.3-4.219

    CrossRef Google Scholar

    [36] S. L. Lima, Nonlethal effects in the ecology of predator-prey interactions, Bioscience, 1998, 48, 25–34. doi: 10.2307/1313225

    CrossRef Google Scholar

    [37] S. L. Lima, Predators and the breeding bird: behavioural and reproductive flexibility under the risk of predation, Biol. Rev., 2009, 84, 485–513. doi: 10.1111/j.1469-185X.2009.00085.x

    CrossRef Google Scholar

    [38] X. Li and R. Wu, Hopf bifurcation analysis of a new commensurate fractional-order hyper chaotic system, Nonlinear Dyn., 2014, 78(1), 279–288. doi: 10.1007/s11071-014-1439-5

    CrossRef Google Scholar

    [39] P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrika, 1948, 35, 213–245. doi: 10.1093/biomet/35.3-4.213

    CrossRef Google Scholar

    [40] A. Maiti and G. P. Samanta, Deterministic and stochastic analysis of a prey-dependent predator-prey system, Int. J. Math. Educ. Sci. Technol., 2005, 6, 65–83.

    Google Scholar

    [41] N. Mondal, D. Barman and S. Alam, Impact of adult predator incited fear in a stage-structured prey–predator model, Environment, Development and Sustainability, 2020, 23(6), 9280–9307. Doi. org/10.1007/s10668-020-01024-1(2020). doi: 10.1007/s10668-020-01024-1(2020)

    CrossRef Google Scholar

    [42] H. Molla, S. Sarwardi and M. Sajid, Predator-prey dynamics with Allee effect on predator species subject to intra-specific competition and nonlinear prey refuge, Journal of Mathematics and Computer Science, 2022, 25(2), 150–165.

    Google Scholar

    [43] A. K. Misra, R. K. Singh, P. K. Tiwari, S. Khajanchi and Y. Kang, Dynamics of algae blooming: effects of budget allocation and time delay, Nonlinear Dynamics, 2020, 100, 1779–1807. doi: 10.1007/s11071-020-05551-4

    CrossRef Google Scholar

    [44] A. F. Nindjin and M. A. Aziz-Alaoui, Persistence and global stability in a delayed Leslie-Gower type three species food chain, J. Math. Anal. Appl., 2008, 340, 340–357. doi: 10.1016/j.jmaa.2007.07.078

    CrossRef Google Scholar

    [45] Z. M. Odibat and N. T. Shawagfeh, Generalized taylor's formula, Applied Mathematics and Computation, 2007, 186(1), 286–293. doi: 10.1016/j.amc.2006.07.102

    CrossRef Google Scholar

    [46] S. Pal, N. Pal, S. Samanta and J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Mathematical Biosciences and Engineering, 2019, 16, 5146–5179. doi: 10.3934/mbe.2019258

    CrossRef Google Scholar

    [47] I. Petra's, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer Science and Business Media, 2011. Doi: 10.1007.978-3-642-18101-6.

    Google Scholar

    [48] E. Preisser, J. Orrock and O. Schmitz, Predator hunting mode and habitat domain affect the strength of non-consumptive effects in predator–prey interactions, Ecology, 2007, 88, 2744–2751. doi: 10.1890/07-0260.1

    CrossRef Google Scholar

    [49] I. Podlubny, Fractional differential equations of mathematics in science and engineering. Academic Press, San Diego, Calif, USA, 1999, 198.

    Google Scholar

    [50] P. Panja, Stability and dynamics of a fractional-order three-species predator–prey model, Theory in Biosciences, 2019, 138(2), 251–259. DOI: 10.1007/s12064-019-00291-5.

    CrossRef Google Scholar

    [51] P. Panja, Dynamics of a fractional order predator-prey model with intraguild predation, Int. J. Model Simul., 2019, 39(4), 256–268. doi: 10.1080/02286203.2019.1611311

    CrossRef Google Scholar

    [52] L. Perko, Differential Equations and Dynamical Systems, Springer Science and Business Media, 2013.

    Google Scholar

    [53] J. Roy, D. Barman and S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 2020, 197(11). DOI: 10.1016/j.biosystems.2020.104176.

    CrossRef Google Scholar

    [54] J. Roy and S. Alam, Study on autonomous and non-autonomous version of a food chain model with intraspecific competition in top predator, Math. Methods Appl. Sci., 2020, 43(6), 3167–3184. doi: 10.1002/mma.6109

    CrossRef Google Scholar

    [55] J. Roy and S. Alam, Fear factor in a prey–predator system in deterministic and stochastic environment, Physica A: Statistical Mechanics and Its Applications, 2020, 541. Doi. org/10.1016/j. physa. 2019.123359. doi: 10.1016/j. physa. 2019.123359

    CrossRef Google Scholar

    [56] S. Ruan and D. Xiao, Global analysis in a predator-prey system with non monotonic functional response, SIAM J. Appl. Math., 2001, 61, 1445–1472. doi: 10.1137/S0036139999361896

    CrossRef Google Scholar

    [57] K. Sarkar and S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecological Complexity, 2020, 42, 100826. Doi: org/10.1016/j.ecocom.2020.100826.

    CrossRef Google Scholar

    [58] K. Sarkar and S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecological Complexity, 2020, 100826(42). Doi: org/10.1016/j.ecocom.2020.100826.

    CrossRef Google Scholar

    [59] K. Sarkar, S. Khajanchi, P. C. Mali and J. J. Nieto, Rich Dynamics of a Predator-Prey System with Different Kinds of Functional Responses, Hindawi, Complexity, 2020. https://doi.org/10.1155/2020/4285294. doi: 10.1155/2020/4285294

    CrossRef Google Scholar

    [60] O. Schmitz, Effect of predator hunting mode on grassland ecosystem function, Science, 2008, 319, 952–954. doi: 10.1126/science.1152355

    CrossRef Google Scholar

    [61] P. K. Tiwari, R. K. Singh, S. Khajanchi, Y. Kang and A. K. Misra, A mathematical model to restore water quality in urban lakes using Phoslock, American Institute of Mathematical Sciences, 2021, 26(6), 3143–3175. Doi: 10.3934/dcdsb.2020223.

    CrossRef Google Scholar

    [62] A. Wörz-Busekros, Global stability in ecological systems with continuous time delay, SIAM J. Appl. Math., 19788, 35(1), 123–34. Doi. org/10.1137/0135011.

    Google Scholar

    [63] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator–prey interactions, Journal of Mathematical Biology, 2016, 73, 1179–1204. doi: 10.1007/s00285-016-0989-1

    CrossRef Google Scholar

    [64] X. Wang and X. Zou, Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators, Bulletin of Mathematical Biology, 2017, 79, 1325–1359. doi: 10.1007/s11538-017-0287-0

    CrossRef Google Scholar

    [65] J. Wang, Y. Cai, S. Fu and W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 2019, 29, 083–109.

    Google Scholar

    [66] L. Y. Zanette, A. F. White, M. C. Allen and M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 2011, 334, 1398–1401.

    Google Scholar

    [67] H. Zhang, Y. Cai, S. Fu and W. Wang, Impact of the fear effect in a predator-prey model incorporating a prey refuge, Applied Mathematics and Computation, 2019, 356, 328–337.

    Google Scholar

Figures(23)  /  Tables(3)

Article Metrics

Article views(2094) PDF downloads(282) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint