2023 Volume 13 Issue 1
Article Contents

Jiandong Zhao, Tonghua Zhang. DYNAMICS OF TWO PREDATOR-PREY MODELS WITH POWER LAW RELATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 233-248. doi: 10.11948/20220026
Citation: Jiandong Zhao, Tonghua Zhang. DYNAMICS OF TWO PREDATOR-PREY MODELS WITH POWER LAW RELATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 233-248. doi: 10.11948/20220026

DYNAMICS OF TWO PREDATOR-PREY MODELS WITH POWER LAW RELATION

  • In this paper, we propose a predator-prey model with power law relation based on the model in [Hatton et al, The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes, Science 349(2015), aac6284], and analyze the global dynamics of both models. We obtain that Hatton's model is persistent for power less than 1, and there exists a separatrix near the origin such that solutions of the model above it are driven to the origin and the ones below it are far away from origin for power greater than 1. However, our model is persistent for all power and has the same singularity as that of Hatton's model at the origin for power greater than 1, which indicate that the prey and predator will coexist or extinct eventually. Furthermore, in our model, the prey will be stable at its carrying capacity and the predator will be extinct for power less than 1, and the prey will be stable at its carrying capacity or both the prey and predator will be extinct for power greater than 1.

    MSC: 34D05, 34C05, 92D25
  • 加载中
  • [1] V. Ajraldi, M. Pittavino and E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal. : Real World Appl., 2011, 12(4), 2319–2338. doi: 10.1016/j.nonrwa.2011.02.002

    CrossRef Google Scholar

    [2] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 1989, 139(3), 311–326. doi: 10.1016/S0022-5193(89)80211-5

    CrossRef Google Scholar

    [3] F. J. Ayala, M. E. Gilpin and J. G. Ehrenfeld, Competition between species: Theoretical models and experimental tests, Theor. Popul. Biol., 1973, 4(3), 331–356. doi: 10.1016/0040-5809(73)90014-2

    CrossRef Google Scholar

    [4] F. S. Berezovskaya, A. S. Novozhilov and G. P. Karev, Population models with singular equilibrium, Math. Biosci., 2007, 208(1), 270–299. doi: 10.1016/j.mbs.2006.10.006

    CrossRef Google Scholar

    [5] A. A. Berryman, The origins and evolution of predator-prey theory, Ecology, 1992, 73(5), 1530–1535. doi: 10.2307/1940005

    CrossRef Google Scholar

    [6] K. Boyadzhiev and V. H. Moll, The integrals in Gradshteyn and Ryzhik, Part 26: The exponential integral, SCIENTIA Series A: Mathematical Sciences, 2015, 26, 19–30.

    Google Scholar

    [7] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012.

    Google Scholar

    [8] P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. : Real World Appl., 2012, 13(4), 1837–1843. doi: 10.1016/j.nonrwa.2011.12.014

    CrossRef Google Scholar

    [9] J. Chattopadhyay, S. Chatterjee and E. Venturino, Patchy agglomeration as a transition from monospecies to recurrent plankton blooms, J. Theor. Biol., 2008, 253(2), 289–295. doi: 10.1016/j.jtbi.2008.03.008

    CrossRef Google Scholar

    [10] L. Chen and F. Chen, Dynamical analysis of a predator-prey model with square root functional response, J. Nonlinear Funct. Anal., 2015, Article ID 8.

    Google Scholar

    [11] L. Chen, F. Chen and L. Chen, Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge, Nonlinear Anal. : Real World Appl., 2010, 11(1), 246–252. doi: 10.1016/j.nonrwa.2008.10.056

    CrossRef Google Scholar

    [12] P. Feng, Analysis of a delayed predator-prey model with ratio-dependent functional response and quadratic harvesting, J. Appl. Math. Comput., 2014, 44(1–2), 251–262. doi: 10.1007/s12190-013-0691-z

    CrossRef Google Scholar

    [13] M. E. Gilpin and F. J. Ayala, Global models of growth and competition, Proc. Natl. Acad. Sci. USA, 1973, 70(12), 3590–3593. doi: 10.1073/pnas.70.12.3590

    CrossRef Google Scholar

    [14] I. A. Hatton, K. S. McCann, J. M. Fryxell, T. J. Davies, M. S merlak, A. R. E. Sinclair and M. Loreau, The predator-prey power law: Biomass scaling across terrenstrial and aquatic biomes, Science, 2015, 349(6252), aac6284. doi: 10.1126/science.aac6284

    CrossRef Google Scholar

    [15] C. S. Holling, The functional response of invertebrate predators to prey density, Memoirs of the Entomological Society of Canada, 1966, 98(48), 5–86.

    Google Scholar

    [16] S. B. Hsu, Ordinary Differential Equations with Applications (2nd Edition), World Scientific, Singapore, 2013.

    Google Scholar

    [17] S. B. Hsu and T. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 1995, 55(3), 763–783. doi: 10.1137/S0036139993253201

    CrossRef Google Scholar

    [18] S. B. Hsu, T. Huang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 2001, 42(6), 489–506. doi: 10.1007/s002850100079

    CrossRef Google Scholar

    [19] C. Ji, D. Jiang and Y. Zhao, Qualitative analysis of stochastic ratio-dependent predator-prey systems, J. Appl. Anal. Comput., 2019, 9(2), 475–500.

    Google Scholar

    [20] C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 1999, 61(1), 19–32. doi: 10.1006/bulm.1998.0072

    CrossRef Google Scholar

    [21] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 1998, 36(4), 389–406. doi: 10.1007/s002850050105

    CrossRef Google Scholar

    [22] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Dynamics of a stochastic predator-prey model with distributed delay and Markovian switching, Phys. A, 2019, 527, 121264. doi: 10.1016/j.physa.2019.121264

    CrossRef Google Scholar

    [23] X. Liu and Y. Lou, Global dynamics of a predator-prey model, J. Math. Anal. Appl., 2010, 371(1), 323–340. doi: 10.1016/j.jmaa.2010.05.037

    CrossRef Google Scholar

    [24] A. J. Lotka, Contribution to the theory of periodic reaction, J. Phys. Chem., 1910, 14(3), 271–274. doi: 10.1021/j150111a004

    CrossRef Google Scholar

    [25] J. Lv, X. Zou and Y. Li, Dynamical properties of a stochastic predator-prey model with functional response, J. Appl. Anal. Comput., 2020, 10(4), 1242–1255.

    Google Scholar

    [26] X. Meng, R. Liu, L. Liu and T. Zhang, Evolutionary analysis of a predator-prey community under natural and artificial selections, Appl. Math. Model., 2015, 39(2), 574–585. doi: 10.1016/j.apm.2014.06.016

    CrossRef Google Scholar

    [27] J. D. Murray, Mathematical Biology Ⅰ: An Introduction (Third Edition), Springer, New York, 2002.

    Google Scholar

    [28] C. E. H. Pimentel, P. M. Rodriguez and L. A. Valencia, A note on a stage-specific predator-prey stochastic model, Phys. A, 2020, 553, 124575. doi: 10.1016/j.physa.2020.124575

    CrossRef Google Scholar

    [29] H. Qi and X. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 2021, 113, 106846. doi: 10.1016/j.aml.2020.106846

    CrossRef Google Scholar

    [30] E. Sáez and E. González-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 1999, 59(5), 1867–1878. doi: 10.1137/S0036139997318457

    CrossRef Google Scholar

    [31] K. Sun, T. Zhang and Y. Tian, Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate, Math. Biosci., 2016, 279, 13–26. doi: 10.1016/j.mbs.2016.06.006

    CrossRef Google Scholar

    [32] X. Tang, Y. Song and T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 2016, 86(1), 73–89. doi: 10.1007/s11071-016-2873-3

    CrossRef Google Scholar

    [33] E. Venturino and S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complex., 2013, 14, 37–47. doi: 10.1016/j.ecocom.2013.01.004

    CrossRef Google Scholar

    [34] C. Viberti and E. Venturino, An ecosystem with Holling type Ⅱ response and predators' genetic variability, Math. Model. Anal., 2014, 19(3), 371–394. doi: 10.3846/13926292.2014.925518

    CrossRef Google Scholar

    [35] V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Memorie Royal Accademia Nazionale dei Lincei, 1926, 2, 31–113.

    Google Scholar

    [36] D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 2005, 65(3), 737–753. doi: 10.1137/S0036139903428719

    CrossRef Google Scholar

    [37] D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 2001, 43(3), 268–290. doi: 10.1007/s002850100097

    CrossRef Google Scholar

    [38] M. Xiao and J. Cao, Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: Analysis and computation, Math. Comput. Model., 2009, 50(3–4), 360–379. doi: 10.1016/j.mcm.2009.04.018

    CrossRef Google Scholar

    [39] C. Xu, S. Yuan amd T. Zhang, Global dynamics of a predator-prey model with defence mechanism for prey, Appl. Math. Lett., 2016, 62, 42–48. doi: 10.1016/j.aml.2016.06.013

    CrossRef Google Scholar

    [40] Y. Yang and T. Zhang, Dynamic analysis of a modified stochastic predator-prey system with general ratio-dependent functional response, Bull. Korean Math. Soc., 2016, 53(1), 103–117. doi: 10.4134/BKMS.2016.53.1.103

    CrossRef Google Scholar

    [41] S. Zhang, T. Zhang and S. Yuan, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecol. Complex., 2021, 45, 100889. doi: 10.1016/j.ecocom.2020.100889

    CrossRef Google Scholar

    [42] T. Zhang, W. Ma, X. Meng and T. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput., 2015, 266, 95–107.

    Google Scholar

    [43] T. Zhang, Y. Xing, H. Zang and M. Han, Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality, Nonlinear Dyn., 2014, 78(1), 265–277. doi: 10.1007/s11071-014-1438-6

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(1490) PDF downloads(274) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint