2023 Volume 13 Issue 1
Article Contents

Shahid Ali, Ahmad Javid. EXPLICIT SOLUTIONS FOR THE CONFORMABLE REGULARIZED LONG WAVE BURGER'S EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 344-358. doi: 10.11948/20220135
Citation: Shahid Ali, Ahmad Javid. EXPLICIT SOLUTIONS FOR THE CONFORMABLE REGULARIZED LONG WAVE BURGER'S EQUATION[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 344-358. doi: 10.11948/20220135

EXPLICIT SOLUTIONS FOR THE CONFORMABLE REGULARIZED LONG WAVE BURGER'S EQUATION

  • In this paper, a dynamical analysis of the conformable regularized long-wave burgers equation is carried out with help of improved $ \tan\big(\frac{\phi(\eta)}{2}\big) $-expansion method. Fractional complex transform converts a nonlinear fractional differential equation in an ordinary differential form which resulted into a number of exact solutions like exponential function solutions, hyperbolic function solutions, trigonometric function solutions and rational function solutions. The constarint conditions are also given for each solution. The physical profiles of proposed solutions are portrayed by 3D and 2D graphs as well as the influence of fractional parameter is also studied for some solutions. Our proposed results showed that improved $ \tan\big(\frac{\phi(\eta)}{2}\big) $-expansion method is reliable method to solve the nonlinear equation in mathematical physics.

    MSC: 78A60, 35Q51, 35Q55
  • 加载中
  • [1] P. and I., Fractional Differential Equation, Academic Press, San Diego, 1999.

    Google Scholar

    [2] U. Afzal, N. Raza and I. G. Murtaza, On soliton solutions of time fractional form of Sawada–Kotera equation, Nonlinear Dynamics, 2019, 95(1), 391–405. doi: 10.1007/s11071-018-4571-9

    CrossRef Google Scholar

    [3] A. A. Abdelhakim, The flaw in the conformable calculus: it is conformable because it is not fractional, Fractional Calculus and Applied Analysis, 2019, 22(2), 242–254. doi: 10.1515/fca-2019-0016

    CrossRef Google Scholar

    [4] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv, 2016, 763–769.

    Google Scholar

    [5] M. J. Ablowitz, M. A. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge university press, 1991.

    Google Scholar

    [6] A. A. Abdelhakim and J. A. T. Machado, A critical analysis of the conformable derivative, Nonlinear Dynamics, 2020, 95(4), 3063–3073.

    Google Scholar

    [7] Z. Feng, The first-integral method to study the Burgers–Korteweg–de Vries equation, Journal of Physics A: Mathematical and General, 2002, 35(2), 343. doi: 10.1088/0305-4470/35/2/312

    CrossRef Google Scholar

    [8] R. Hirota, Exact solution of the Korteweg—de Vries equation for multiple collisions of solitons, Physical Review Letters, 1971, 27(18), 1192. doi: 10.1103/PhysRevLett.27.1192

    CrossRef Google Scholar

    [9] M. Inc, H. Rezazadeh, J. Vahidi, M. Eslami, M. A. Akinlar, M. N. Ali and Y. Chu, New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity, Aims Math., 2020, 5(6), 6972–6984.

    Google Scholar

    [10] A. Korkmaz, Explicit exact solutions to some one-dimensional conformable time fractional equations, Waves in Random and Complex Media, 2019, 29(1), 124–137. doi: 10.1080/17455030.2017.1416702

    CrossRef Google Scholar

    [11] D. Kaya, A numerical simulation of solitary-wave solutions of the generalized regularized long-wave equation, Applied Mathematics and Computation, 2004, 149(3), 833–841. doi: 10.1016/S0096-3003(03)00189-9

    CrossRef Google Scholar

    [12] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, Journal of computational and applied mathematics, 2014, 65–70.

    Google Scholar

    [13] U. Khan, A. Irshad, N. Ahmed and S. T. Mohyud-Din, tan(ϕ(ξ)/2)-expansion method for (2+1) dimensional KP-BBM wave equation, Optical and Quantum Electronics, 2018, 50(3), 1–22.

    Google Scholar

    [14] T. D. Leta, W. Liu, H. Rezazadeh, J. Ding and A. E. Achab, Analytical Traveling Wave and Soliton Solutions of the (2+1) Dimensional Generalized Burgers–Huxley Equation, Qualitative Theory of Dynamical Systems, 2021, 20(3), 1–23.

    Google Scholar

    [15] T. D. Leta, W. Liu, A. E. Achab, H. Rezazadeh and A. Bekir, Dynamical behavior of traveling wave solutions for a (2+1)-dimensional Bogoyavlenskii coupled system, Qualitative theory of dynamical systems, 2021, 20(1), 1–22. doi: 10.1007/s12346-020-00443-9

    CrossRef Google Scholar

    [16] J. Manafian and M. Lakestani, Application of tan(ϕ(ξ)/2)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity, Optik, 2016, 127(4), 2040–2054. doi: 10.1016/j.ijleo.2015.11.078

    CrossRef Google Scholar

    [17] J. Manafian and M. Lakestani, Optical soliton solutions for the Gerdjikov–Ivanov model via tan(ϕ(ξ)/2)-expansion method, Optik, 2016, 127(20), 9603–9620. doi: 10.1016/j.ijleo.2016.07.032

    CrossRef Google Scholar

    [18] J. Manafian and R. F. Zinati, Application of tan(ϕ(ξ)/2)-expansion method to solve some nonlinear fractional physical model, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90(1), 67–86. doi: 10.1007/s40010-018-0550-2

    CrossRef Google Scholar

    [19] N. Raza and A. Zubair, Dipole and Combo Optical Solitons in Birefringent Fibers in the Presence of Four-Wave Mixing, Communications in Theoretical Physics, 2019, 71(6), 723. doi: 10.1088/0253-6102/71/6/723

    CrossRef Google Scholar

    [20] N. Raza, U. Afzal, A. R. Butt and H. Rezazadeh, Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities, Optical and Quantum Electronics, 2019, 51(4), 1–16.

    Google Scholar

    [21] N. Raza and A. Zubair, Optical dark and singular solitons of generalized nonlinear Schrödinger's equation with anti-cubic law of nonlinearity, Modern Physics Letters B, 2019, 33(13), 1950158. doi: 10.1142/S0217984919501586

    CrossRef Google Scholar

    [22] N. Raza and A. Javid, Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrodinger's equation, Waves in Random and Complex Media, 2019, 29(3), 496–508. doi: 10.1080/17455030.2018.1451009

    CrossRef Google Scholar

    [23] N. Raza and A. Zubair, Dipole and Combo Optical Solitons in Birefringent Fibers in the Presence of Four-Wave Mixing, Communications in Theoretical Physics, 2019, 71(6), 723. doi: 10.1088/0253-6102/71/6/723

    CrossRef Google Scholar

    [24] N. Raza and A. Javid, Generalization of optical solitons with dual dispersion in the presence of Kerr and quadratic-cubic law nonlinearities, Modern Physics Letters B, 2019, 33(01), 1850427. doi: 10.1142/S0217984918504274

    CrossRef Google Scholar

    [25] N. Raza, S. Sial and M. Kaplan, Exact periodic and explicit solutions of higher dimensional equations with fractional temporal evolution, Optik, 2018, 156, 628–634. doi: 10.1016/j.ijleo.2017.11.107

    CrossRef Google Scholar

    [26] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional derivatives and integrals, Gordon and Breach Science Publishers, Switzerland, 1993.

    Google Scholar

    [27] A. Shah and R. Saeed, Ion acoustic shock waves in a relativistic electron–positron–ion plasmas, Physics Letters A, 2009, 373(45), 4164–4168. doi: 10.1016/j.physleta.2009.09.028

    CrossRef Google Scholar

    [28] R. Saeed, A. Shah and M. Noaman-ul-Haq, Nonlinear Korteweg–de Vries equation for soliton propagation in relativistic electron-positron-ion plasma with thermal ions, Physics of Plasmas, 2010, 17(10), 102301. doi: 10.1063/1.3481773

    CrossRef Google Scholar

    [29] T. Tebue, E. A. Korkmaz, H. Rezazadeh and N. Raza, New auxiliary equation approach to derive solutions of fractional resonant Schrödinger equation, Analysis and Mathematical Physics, 2021, 11(4), 1–13.

    Google Scholar

    [30] Y. UĞURLU and B. KILIÇ, Traveling wave solutions of the RLW-Burgers equation and potential kdv equation by using the-expansion method, Cankaya University Journal of Law, 2009, 12(2), 103–110.

    Google Scholar

    [31] Y. Ugurlu, I. E. Inan and H. Bulut, Two new applications of tan(F(ξ)/2)-expansion method, Optik, 2017, 131, 539–546. doi: 10.1016/j.ijleo.2016.11.122

    CrossRef Google Scholar

    [32] M. Wang, Y. Zhou and Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Physics Letters A, 1996, 216(1–5), 67–75. doi: 10.1016/0375-9601(96)00283-6

    CrossRef Google Scholar

    [33] A. M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Applied Mathematics and Computation, 2004, 154(3), 713–723.

    Google Scholar

    [34] M. Zhou, A. S. V. Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc and A. A. Aly, Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives, Journal of Function Spaces, 2021.

    Google Scholar

    [35] H. Zhao and B. Xuan, Existence and convergence of solutions for the generalized BBM-Burgers equations with dissipative term, Nonlinear Analysis: Theory, Methods and Applications, 1997, 28(11), 1835–1849.

    Google Scholar

    [36] Y. Zhou and Q. Liu, Kink waves and their evolution of the RLW-burgers equation, In Abstract and Applied Analysis Hindawi, 2012, 1–14.

    Google Scholar

Figures(5)

Article Metrics

Article views(1370) PDF downloads(287) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint