2023 Volume 13 Issue 5
Article Contents

Li Zou, Liqin Zhao. SECOND ORDER MELNIKOV FUNCTIONS FOR PLANAR PIECEWISE SMOOTH INTEGRABLE NON-HAMILTONIAN SYSTEMS WITH MULTIPLE ZONES AND APPLICATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2995-3025. doi: 10.11948/20230136
Citation: Li Zou, Liqin Zhao. SECOND ORDER MELNIKOV FUNCTIONS FOR PLANAR PIECEWISE SMOOTH INTEGRABLE NON-HAMILTONIAN SYSTEMS WITH MULTIPLE ZONES AND APPLICATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2995-3025. doi: 10.11948/20230136

SECOND ORDER MELNIKOV FUNCTIONS FOR PLANAR PIECEWISE SMOOTH INTEGRABLE NON-HAMILTONIAN SYSTEMS WITH MULTIPLE ZONES AND APPLICATION

  • In this paper, we study the expressions of the second order Melnikov functions for planar piecewise smooth integrable non-Hamiltonian systems with m(∈ $\mathbb{N}$) zones separated by half straight lines through the origin under the piecewise perturbations. As an application, it is proved that there exists a planar piecewise quadratic system having at least 8 limit cycles near the origin.

    MSC: 34C05,34C07
  • 加载中
  • [1] K. Andrade, O. Cespedes and D. D. Novaes, Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve, J. Differential Equations, 2021, 287, 1–36. doi: 10.1016/j.jde.2021.03.039

    CrossRef Google Scholar

    [2] J. Bastos, C. A. Buzzi, J. Llibre and D. D. Novaes, Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold, J. Differential Equations, 2019, 267, 3748–3767. doi: 10.1016/j.jde.2019.04.019

    CrossRef Google Scholar

    [3] M. Cai and M. Han, The number of limit cycles for a class of cubic systems with multiple parameters, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2022, 32(5), 2250072. doi: 10.1142/S0218127422500729

    CrossRef Google Scholar

    [4] X. Chen and M. Han, Number of limit cycles from a class of perturbed piecewise polynomial systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2021, 31(9), 2150123. doi: 10.1142/S0218127421501236

    CrossRef Google Scholar

    [5] X. Chen, T. Li and J. Llibre, Melnikov functions of arbitrary order for piecewise smooth differential systems in $ \mathbb{R}.{n} $ and applications, J. Differential Equations, 2022, 314, 340–369. doi: 10.1016/j.jde.2022.01.019

    CrossRef $ \mathbb{R}.{n} $ and applications" target="_blank">Google Scholar

    [6] B. Coll, A. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 2005, 12, 275–287.

    Google Scholar

    [7] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth dynamical systems: theory and applications, Springer-Verlag, London, 2008.

    Google Scholar

    [8] Y. Gao, L. Peng and C. Liu, Bifurcation of limit cycles from a class of piecewise smooth systems with two vertical straight lines of singularity, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, 27(10), 1750157. doi: 10.1142/S0218127417501577

    CrossRef Google Scholar

    [9] S. Gong and M. Han, An estimate of the number of limit cycles bifurcating from a planar integrable system, Bull. Sci. Math., 2022, 176, 103118. doi: 10.1016/j.bulsci.2022.103118

    CrossRef Google Scholar

    [10] M. Han, H. Sun and Z. Balanov, Upper estimates for the number of periodic solutions to multi-dimensional systems, J. Differential Equations, 2019, 266, 8281–8293. doi: 10.1016/j.jde.2018.12.034

    CrossRef Google Scholar

    [11] M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bull. Sci. Math., 2020, 161, 102866. doi: 10.1016/j.bulsci.2020.102866

    CrossRef Google Scholar

    [12] M. Han and J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 2021, 3, 13–34.

    Google Scholar

    [13] F. Jiang, Limit cycles of discontinuous perturbed quadratic center via the second order averaging method, Qual. Theory Dyn. Syst., 2022, 21(3), 91. doi: 10.1007/s12346-022-00620-y

    CrossRef Google Scholar

    [14] S. Li and C. Liu, A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system, J. Math. Anal. Appl., 2015, 428(2), 1354–1367. doi: 10.1016/j.jmaa.2015.03.074

    CrossRef Google Scholar

    [15] S. Li and J. Llibre, Canard limit cycles for piecewise linear liénard systems with three zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2020, 30(15), 2050232. doi: 10.1142/S0218127420502326

    CrossRef Google Scholar

    [16] S. Li, X. Cen and Y. Zhao, Bifurcation of limit cycles by perturbing piecewise smooth integrable non-Hamiltonian systems, Nonlinear Anal. Real World Appl., 2017, 34, 140–148. doi: 10.1016/j.nonrwa.2016.08.005

    CrossRef Google Scholar

    [17] S. Liu, M. Han and J. Li, Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differential Equations, 2021, 275, 204–233. doi: 10.1016/j.jde.2020.11.040

    CrossRef Google Scholar

    [18] W. Liu and M. Han, Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications, Discrete Contin. Dyn. Syst. Ser. S., 2023, 16(3–4), 498–532.

    Google Scholar

    [19] X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2010, 20(5), 1379–1390. doi: 10.1142/S021812741002654X

    CrossRef Google Scholar

    [20] F. Liang, V. Romanovski and D. Zhang, Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solitons Fractals. 2018, 111, 18–34. doi: 10.1016/j.chaos.2018.04.002

    CrossRef Google Scholar

    [21] J. Llibre, A. C. Mereu and D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 2015, 258, 4007–4032. doi: 10.1016/j.jde.2015.01.022

    CrossRef Google Scholar

    [22] J. Llibre and J. Yu, On the upper bound of the number of limit cycles obtained by the second order averaging method, Dyn. Contin. Discrete Impuls. Syst. Ser. B, 2007, 14(6), 841–873.

    Google Scholar

    [23] L. Peng, Y. Gao and Z. Feng, Limit cycles bifurcating from piecewise quadratic systems separated by a straight line, Nonlinear Anal., 2020, 196, 111802. doi: 10.1016/j.na.2020.111802

    CrossRef Google Scholar

    [24] L. Sheng, S. Wang, X. Li and M. Han, Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method, J. Math. Anal. Appl., 2020, 490(2), 124311. doi: 10.1016/j.jmaa.2020.124311

    CrossRef Google Scholar

    [25] H. Tian and M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differential Equations, 2017, 263, 7448–7474. doi: 10.1016/j.jde.2017.08.011

    CrossRef Google Scholar

    [26] Y. Tian, X. Shang and M. Han, Bifurcation of limit cycles in a piecewise smooth near-integrable system, J. Math. Anal. Appl., 2021, 504(2), 125578. doi: 10.1016/j.jmaa.2021.125578

    CrossRef Google Scholar

    [27] Y. Wang, M. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals., 2016, 83, 158–177. doi: 10.1016/j.chaos.2015.11.041

    CrossRef Google Scholar

    [28] Y. Xiong and J. Hu, Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points, J. Math. Anal. Appl., 2019, 474(1), 194–218. doi: 10.1016/j.jmaa.2019.01.039

    CrossRef Google Scholar

    [29] J. Yang and L. Zhao, Limit cycle bifurcations for piecewise smooth integrable differential systems, Discrete Contin. Dyn. Syst. Ser. B., 2017, 22(6), 2417–2425.

    Google Scholar

    [30] P. Yang, J. P. Françoise and J. Yu, Second order Melnikov functions of piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2020, 30(1), 2050016. doi: 10.1142/S0218127420500169

    CrossRef Google Scholar

    [31] P. Yang, Y. Yang and J. Yu, Up to second order Melnikov functions for general piecewise Hamiltonian systems with nonregular separation line, J. Differential Equations, 2021, 285, 583–606. doi: 10.1016/j.jde.2021.03.020

    CrossRef Google Scholar

    [32] L. Zou and L. Zhao, The cyclicity of a class of global nilpotent center under perturbations of piecewise smooth polynomials with four zones, Qual. Theory Dyn. Syst., 2022, 21(3), 73. doi: 10.1007/s12346-022-00600-2

    CrossRef Google Scholar

Figures(1)

Article Metrics

Article views(785) PDF downloads(128) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint