Citation: | Li Zou, Liqin Zhao. SECOND ORDER MELNIKOV FUNCTIONS FOR PLANAR PIECEWISE SMOOTH INTEGRABLE NON-HAMILTONIAN SYSTEMS WITH MULTIPLE ZONES AND APPLICATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2995-3025. doi: 10.11948/20230136 |
In this paper, we study the expressions of the second order Melnikov functions for planar piecewise smooth integrable non-Hamiltonian systems with
[1] | K. Andrade, O. Cespedes and D. D. Novaes, Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve, J. Differential Equations, 2021, 287, 1–36. doi: 10.1016/j.jde.2021.03.039 |
[2] | J. Bastos, C. A. Buzzi, J. Llibre and D. D. Novaes, Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold, J. Differential Equations, 2019, 267, 3748–3767. doi: 10.1016/j.jde.2019.04.019 |
[3] | M. Cai and M. Han, The number of limit cycles for a class of cubic systems with multiple parameters, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2022, 32(5), 2250072. doi: 10.1142/S0218127422500729 |
[4] | X. Chen and M. Han, Number of limit cycles from a class of perturbed piecewise polynomial systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2021, 31(9), 2150123. doi: 10.1142/S0218127421501236 |
[5] |
X. Chen, T. Li and J. Llibre, Melnikov functions of arbitrary order for piecewise smooth differential systems in $ \mathbb{R}.{n} $ and applications, J. Differential Equations, 2022, 314, 340–369. doi: 10.1016/j.jde.2022.01.019
CrossRef $ \mathbb{R}.{n} $ and applications" target="_blank">Google Scholar |
[6] | B. Coll, A. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 2005, 12, 275–287. |
[7] | M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth dynamical systems: theory and applications, Springer-Verlag, London, 2008. |
[8] | Y. Gao, L. Peng and C. Liu, Bifurcation of limit cycles from a class of piecewise smooth systems with two vertical straight lines of singularity, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, 27(10), 1750157. doi: 10.1142/S0218127417501577 |
[9] | S. Gong and M. Han, An estimate of the number of limit cycles bifurcating from a planar integrable system, Bull. Sci. Math., 2022, 176, 103118. doi: 10.1016/j.bulsci.2022.103118 |
[10] | M. Han, H. Sun and Z. Balanov, Upper estimates for the number of periodic solutions to multi-dimensional systems, J. Differential Equations, 2019, 266, 8281–8293. doi: 10.1016/j.jde.2018.12.034 |
[11] | M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bull. Sci. Math., 2020, 161, 102866. doi: 10.1016/j.bulsci.2020.102866 |
[12] | M. Han and J. Yang, The maximum number of zeros of functions with parameters and application to differential equations, J. Nonlinear Model. Anal., 2021, 3, 13–34. |
[13] | F. Jiang, Limit cycles of discontinuous perturbed quadratic center via the second order averaging method, Qual. Theory Dyn. Syst., 2022, 21(3), 91. doi: 10.1007/s12346-022-00620-y |
[14] | S. Li and C. Liu, A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system, J. Math. Anal. Appl., 2015, 428(2), 1354–1367. doi: 10.1016/j.jmaa.2015.03.074 |
[15] | S. Li and J. Llibre, Canard limit cycles for piecewise linear liénard systems with three zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2020, 30(15), 2050232. doi: 10.1142/S0218127420502326 |
[16] | S. Li, X. Cen and Y. Zhao, Bifurcation of limit cycles by perturbing piecewise smooth integrable non-Hamiltonian systems, Nonlinear Anal. Real World Appl., 2017, 34, 140–148. doi: 10.1016/j.nonrwa.2016.08.005 |
[17] | S. Liu, M. Han and J. Li, Bifurcation methods of periodic orbits for piecewise smooth systems, J. Differential Equations, 2021, 275, 204–233. doi: 10.1016/j.jde.2020.11.040 |
[18] | W. Liu and M. Han, Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications, Discrete Contin. Dyn. Syst. Ser. S., 2023, 16(3–4), 498–532. |
[19] | X. Liu and M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2010, 20(5), 1379–1390. doi: 10.1142/S021812741002654X |
[20] | F. Liang, V. Romanovski and D. Zhang, Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line, Chaos Solitons Fractals. 2018, 111, 18–34. doi: 10.1016/j.chaos.2018.04.002 |
[21] | J. Llibre, A. C. Mereu and D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 2015, 258, 4007–4032. doi: 10.1016/j.jde.2015.01.022 |
[22] | J. Llibre and J. Yu, On the upper bound of the number of limit cycles obtained by the second order averaging method, Dyn. Contin. Discrete Impuls. Syst. Ser. B, 2007, 14(6), 841–873. |
[23] | L. Peng, Y. Gao and Z. Feng, Limit cycles bifurcating from piecewise quadratic systems separated by a straight line, Nonlinear Anal., 2020, 196, 111802. doi: 10.1016/j.na.2020.111802 |
[24] | L. Sheng, S. Wang, X. Li and M. Han, Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method, J. Math. Anal. Appl., 2020, 490(2), 124311. doi: 10.1016/j.jmaa.2020.124311 |
[25] | H. Tian and M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differential Equations, 2017, 263, 7448–7474. doi: 10.1016/j.jde.2017.08.011 |
[26] | Y. Tian, X. Shang and M. Han, Bifurcation of limit cycles in a piecewise smooth near-integrable system, J. Math. Anal. Appl., 2021, 504(2), 125578. doi: 10.1016/j.jmaa.2021.125578 |
[27] | Y. Wang, M. Han and D. Constantinescu, On the limit cycles of perturbed discontinuous planar systems with 4 switching lines, Chaos Solitons Fractals., 2016, 83, 158–177. doi: 10.1016/j.chaos.2015.11.041 |
[28] | Y. Xiong and J. Hu, Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points, J. Math. Anal. Appl., 2019, 474(1), 194–218. doi: 10.1016/j.jmaa.2019.01.039 |
[29] | J. Yang and L. Zhao, Limit cycle bifurcations for piecewise smooth integrable differential systems, Discrete Contin. Dyn. Syst. Ser. B., 2017, 22(6), 2417–2425. |
[30] | P. Yang, J. P. Françoise and J. Yu, Second order Melnikov functions of piecewise Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2020, 30(1), 2050016. doi: 10.1142/S0218127420500169 |
[31] | P. Yang, Y. Yang and J. Yu, Up to second order Melnikov functions for general piecewise Hamiltonian systems with nonregular separation line, J. Differential Equations, 2021, 285, 583–606. doi: 10.1016/j.jde.2021.03.020 |
[32] | L. Zou and L. Zhao, The cyclicity of a class of global nilpotent center under perturbations of piecewise smooth polynomials with four zones, Qual. Theory Dyn. Syst., 2022, 21(3), 73. doi: 10.1007/s12346-022-00600-2 |
The period orbits of system