2024 Volume 14 Issue 2
Article Contents

Le Dinh Long, Vo Ngoc Minh, Yusuf Gurefe, Yusuf Pandir. GLOBAL EXISTENCE AND CONTINUOUS DEPENDENCE ON PARAMETERS OF CONFORMABLE PSEUDO-PARABOLIC INCLUSION[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 986-1005. doi: 10.11948/20230246
Citation: Le Dinh Long, Vo Ngoc Minh, Yusuf Gurefe, Yusuf Pandir. GLOBAL EXISTENCE AND CONTINUOUS DEPENDENCE ON PARAMETERS OF CONFORMABLE PSEUDO-PARABOLIC INCLUSION[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 986-1005. doi: 10.11948/20230246

GLOBAL EXISTENCE AND CONTINUOUS DEPENDENCE ON PARAMETERS OF CONFORMABLE PSEUDO-PARABOLIC INCLUSION

  • In this paper, we establish global existence and continuous dependence on parameters for sets of solutions of the differential inclusion including self-adjoint operators with fractional order in the form

    $\left\{\begin{array}{lr}\frac{{ }^C \partial^\alpha}{\partial t^\alpha} u(t)+m \mathcal{L}^{s_1} \frac{{ }^C \partial^\alpha}{\partial t^\alpha} u(t)+\mathcal{L}^{s_2} u(t) \in F(t, u(t), \eta), & t \in[0, T), \\u(0)=\varphi, & \text { on } \mathcal{D},\end{array}\right.$

    where $ s_1, s_2>0 $. We first use spectral theory on Hilbert spaces to obtain formulation for mild solutions. With this formulation, we use a measure of noncompactness with values in ordered space to construct useful bounds for solution operators. Then, we establish necessarily upper semicontinuous and condensing settings, which mainly help to obtain the global existence of mild solutions and the compactness of the mild solutions set. Before ending the article, we discuss the continuous dependence of the solution set when the input data contains the parameter $ \eta $.

    MSC: 35R11, 35B65, 26A33
  • 加载中
  • [1] A. Abdeljawad, R. P. Agarwal, E. Karapinar and P. S. Kumari, Solutions of he nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 2019, 11, 686. doi: 10.3390/sym11050686

    CrossRef Google Scholar

    [2] R. S. Adıguzel, U. Aksoy, E. Karapınar and I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 2021, 115(3), Paper No. 155, 16 pp.

    Google Scholar

    [3] R. S. Adıguzel, U. Aksoy, E. Karapinar and I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math., 2021, 20, 313–333.

    Google Scholar

    [4] R. S. Adigüzel, U. Aksoy, E. Karapinar and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Meth. Appl. Sci., 2020. DOI: 10.1002/mma.6652

    CrossRef Google Scholar

    [5] F. M. Alharbia, D. Baleanu and E. Abdelhalim, Physical properties of the projectile motion using the conformable derivative, Chinese J. Phys., 2019, 58, 18–28. doi: 10.1016/j.cjph.2018.12.010

    CrossRef Google Scholar

    [6] B. Alqahtani, H. Aydi, E. Karapinar and V. Rakocevic, A Solution for Volterra Fractional Integral Equations by Hybrid Contractions, Mathematics, 2019, 7, 694. DOI: 10.3390/math7080694

    CrossRef Google Scholar

    [7] B. Alqahtani, A. Fulga, F. Jarad and E. Karapinar, Nonlinear F-contractions on b-metric spaces and differential equations in the frame of fractional derivatives with Mittag–Leffler kernel, Chaos Solitons Fractals, 2019, 128, 349–354. doi: 10.1016/j.chaos.2019.08.002

    CrossRef Google Scholar

    [8] K. M. Amenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter & Co., Berlin, 2001.

    Google Scholar

    [9] N. T. Anh, T. D. Ke and N. N. Quan, Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21(10), 3637–3654. doi: 10.3934/dcdsb.2016114

    CrossRef Google Scholar

    [10] V. V. Au, D. Baleanu, Y. Zhou and N. H. Can, On a problem for the nonlinear diffusion equation with conformable time derivative, Appl. Anal., 2022, 101(17), 6255–6279. doi: 10.1080/00036811.2021.1921155

    CrossRef Google Scholar

    [11] H. D. Binh, N. H. Can and N. V. Tien, Global existence for nonlinear diffusion with the conformable operator using Banach fixed point theorem, Filomat, 2023, 37(21), 7115–7130.

    Google Scholar

    [12] M. Bohner and S. Hristova, Stability for generalized Caputo proportional fractional delay integro-differential equations, Boundary Value Problems, 2022, 2022(1), 1–15. doi: 10.1186/s13661-021-01582-x

    CrossRef Google Scholar

    [13] M. Bohner, B. Rani, S. Selvarangam and E. Thandapani, Oscillation of even-order neutral differential equations with retarded and advanced arguments, Georgian Mathematical Journal, 2021, 28(6), 831–842. doi: 10.1515/gmj-2021-2104

    CrossRef Google Scholar

    [14] M. Bouaouid, K. Hilal and S. Melliani, Nonlocal telegraph equation in frame of the conformable time-fractional derivative, Adv. Math. Phys., 2019, 2019, Article ID 7528937.

    Google Scholar

    [15] A. Elbukhari, Z. B. Fan and G. Li, Existence of Mild Solutions for Nonlocal Evolution Equations with the Hilfer Derivatives, Journal of Function Spaces, 2023, 2023.

    Google Scholar

    [16] V. S. Guliyev, M. N. Omarova and M. A. Ragusa, Characterizations for the genuine Calderon-Zygmund operators and commutators on generalized Orlicz-Morrey spaces, Advances in Nonlinear Analysis, 2023, 12(1).

    Google Scholar

    [17] A. Jaiswal and D. Bahuguna. Semilinear conformable fractional differential equations in Banach spaces, Differ. Equ. Dyn. Syst., 2019, 27(1–3), 313–325. doi: 10.1007/s12591-018-0426-6

    CrossRef Google Scholar

    [18] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter & Co., Berlin, 2001.

    Google Scholar

    [19] T. D. Ke and D. Lan, Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fixed Point Theory Appl., 2017, 19(4), 2185–2208. doi: 10.1007/s11784-017-0412-6

    CrossRef Google Scholar

    [20] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics 301, Longman, Harlow, 1994.

    Google Scholar

    [21] V. Kokilashvili, A. Meskhi and M. A. Ragusa, Weighted extrapolation in grand Morrey spaces and applications to partial differential equations, Rendiconti Lincei-Matematica e Applicazioni, 2019, 30(1), 67–92. doi: 10.4171/RLM/836

    CrossRef Google Scholar

    [22] T. B. Ngoc, E. Nane and N. H. Tuan, On a terminal value problem for stochastic space-time fractional wave equations, Math. Methods Appl. Sci., 2023, 46(1), 1206–1226. doi: 10.1002/mma.8573

    CrossRef Google Scholar

    [23] T. B. Ngoc and V. V. Tri, Global existence and continuous dependence on parameters for space-time fractional pseudo-parabolic inclusion, Journal of Nonlinear and Convex Analysis, 2022, 23(7), 1469–1485.

    Google Scholar

    [24] T. B. Ngoc and V. V. Tri, Global existence and continuous dependence on parameters for space-time fractional pseudo-parabolic inclusion, J. Nonlinear and Convex Analysis, 2022, 23(7), 1469–1485.

    Google Scholar

    [25] T. B. Ngoc, V. V. Tri, Z. Hammouch and N. H. Can, Stability of a class of problems for time-space fractional pseudo-parabolic equation with datum measured at terminal time, Appl. Numer. Math., 2021, 167, 308–329. doi: 10.1016/j.apnum.2021.05.009

    CrossRef Google Scholar

    [26] A. T. Nguyen, N. H. Tuan and C. Yang, On Cauchy problem for fractional parabolic-elliptic Keller-Segel model, Adv. Nonlinear Anal., 2023, 12(1), 97–116.

    Google Scholar

    [27] A. A. Omer, M. Maysaa and D. Baleanu, New exact solution of generalized biological population model, J. Nonlinear Sci. Appl., 2017, 10(7), 3916–3929. doi: 10.22436/jnsa.010.07.44

    CrossRef Google Scholar

    [28] V. N. Phong and D. Lan, Finite-time attractivity of solutions for a class of fractional differential inclusions with finite delay, J. Pseudo-Differ. Oper. Appl., 2021, 12(1), No. 5, 18 pp.

    Google Scholar

    [29] N. D. Phuong, A. O. Akdemir, N. V. Tien and N. A. Tuan, Remarks on parabolic equation with the conformable variable derivative in Hilbert scales, AIMS Math., 2022, 7(11), 20020–20042. doi: 10.3934/math.20221095

    CrossRef Google Scholar

    [30] M. A. Ragusa and A. Scapellato, Mixed Morrey spaces and their applications to partial differential equations, Nonlinear Analysis: Theory, Methods & Applications, 2017, 151, 51–65.

    Google Scholar

    [31] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426–447. doi: 10.1016/j.jmaa.2011.04.058

    CrossRef Google Scholar

    [32] V. V. Tri, Continuous dependence on parameters of second order differential inclusion and self-adjoint operator, Thu Dau Mot University, Journal of Science, 2022, 4(4), 1–17.

    Google Scholar

    [33] V. V. Tri, Fixed point index computations for multivalued mapping and application to the problem of positive eigenvalues in ordered space, Applied General Topology, 2022, 23(1), 107–119. DOI: 10.4995/agt.2022.15669

    CrossRef Google Scholar

    [34] V. V. Tri, A positive point of using fixed point theory in K-normed space for Cauchy problem in a scale of Banach spaces, J. of Interdisciplinary Mathematics, 2022, 25(1), 155–162. DOI: 10.1080/09720502.2021.2006330

    CrossRef Google Scholar

    [35] V. V. Tri and S. Rezapour, Eigenvalue intervals of multivalued operator and its application for a multipoint boundary value problem, Bulletin of the Iranian Mathematical Society, 2021, 47(4), 1301–1314.

    Google Scholar

    [36] N. H. Tuan, V. V. Au and N. A. Tuan, Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in Besov spaces, Arch. Math. (Basel), 2022, 118(3), 305–314.

    Google Scholar

    [37] N. H. Tuan, M. Foondun, T. N. Thach and R. Wang, On backward problems for stochastic fractional reaction equations with standard and fractional Brownian motion, Bull. Sci. Math., 2022, 179, Paper No. 103158, 58 pp.

    Google Scholar

    [38] N. H. Tuan, N. M. Hai, T. N. Thach and N. H. Can, On stochastic elliptic equations driven by Wiener process with non-local condition, Discrete and Continuous Dynamical Systems - Series S. DOI: 10.3934/dcdss.2022187

    Google Scholar

    [39] N. H. Tuan, D. Lesnic, T. N. Thach and T. B. Ngoc, Regularization of the backward stochastic heat conduction problem, J. Inverse Ill-Posed Probl., 2022, 30(3), 351–362.

    Google Scholar

    [40] N. H. Tuan, A. T. Nguyen and N. H. Can, Existence and continuity results for Kirchhoff parabolic equation with Caputo-Fabrizio operator, Chaos, Solitons & Fractals, 2023, 167, 113028.

    Google Scholar

    [41] N. H. Tuan, V. T. Nguyen, D. O'Regan and N. H. Can, New results on continuity by order of derivative for conformable parabolic equations, Fractals, 2023.

    Google Scholar

    [42] N. H. Tuan, A. T. Nguyen and C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations, Discrete Contin. Dyn. Syst., 2022, 42(6), 2637–2665.

    Google Scholar

    [43] N. H. Tuan, N. D. Phuong and T. N. Thach, New well-posedness results for stochastic delay Rayleigh-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 2023, 28(1).

    Google Scholar

    [44] N. H. Tuan, N. V. Tien and C. Yang, On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative, Math. Biosci. Eng., 2022, 19(11), 11232–11259.

    Google Scholar

    [45] R. Wang, N. H. Can, N. A. Tuan and N. H. Tuan, Local and global existence of solutions to a time-fractional wave equation with an exponential growth, Commun. Nonlinear Sci. Numer. Simul., 2023, 118, Paper No. 107050, 20 pp.

    Google Scholar

    [46] X. Wang, J. R. Wang and D. Shen, Convergence analysis for iterative learning control of conformable fractional differential equations, Math. Methods Appl. Sci., 2018, 2018, 8315–8328.

    Google Scholar

    [47] A. Yusuf, M. Inc and A. I. Aliyu, Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation, Adv. Differ. Equ., 2018, 2018, Article Number 319, 11 pages.

    Google Scholar

Article Metrics

Article views(468) PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint