2019 Volume 9 Issue 4
Article Contents

Mandeep Singh, Amit Kumar Verma, Ravi P. Agarwal. ON AN ITERATIVE METHOD FOR A CLASS OF 2 POINT & 3 POINT NONLINEAR SBVPS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1242-1260. doi: 10.11948/2156-907X.20180213
Citation: Mandeep Singh, Amit Kumar Verma, Ravi P. Agarwal. ON AN ITERATIVE METHOD FOR A CLASS OF 2 POINT & 3 POINT NONLINEAR SBVPS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1242-1260. doi: 10.11948/2156-907X.20180213

ON AN ITERATIVE METHOD FOR A CLASS OF 2 POINT & 3 POINT NONLINEAR SBVPS

  • In this article, we propose a novel modification to Quasi-Newton method, which is now a days popularly known as variation iteration method (VIM) and use it to solve the following class of nonlinear singular differential equations which arises in chemistry $ -y''(x)-\frac{\alpha}{x}y'(x) = f(x, y), \; x\in(0, 1), $ where $ \alpha\geq1 $, subject to certain two point and three point boundary conditions. We compute the relaxation parameter as a function of Bessel and the modified Bessel functions. Since rate of convergence of solutions to the iterative scheme depends on the relaxation parameter, thus we can have faster convergence. We validate our results for two point and three point boundary conditions. We allow $ \partial f/\partial y $ to take both positive and negative values.
    MSC: 34B16, 34B27, 34B60
  • 加载中
  • [1] N. Anderson and A. M. Arthurs, Complementary variational principles for diffusion problems with Michalelis-Menten kinetics, Bull. Math. Biol., 1980, 42(1), 131-135. doi: 10.1007/BF02462371

    CrossRef Google Scholar

    [2] G. Adomian and R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl. 1983, 91(1), 39-46. doi: 10.1016/0022-247X(83)90090-2

    CrossRef Google Scholar

    [3] G. Adomian and R. Rach, Modified decomposition solution of linear and nonlinear boundary-value problems, Nonlinear Anal. TMA 1994, 23(5), 615-619. doi: 10.1016/0362-546X(94)90240-2

    CrossRef Google Scholar

    [4] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1967.

    Google Scholar

    [5] P. L. Chamber, On the solution of the Poisson-Boltzmann equation with the application to the theory of thermal explosions, J. Chem. Phys., 1952, 20(11), 1795-1797. doi: 10.1063/1.1700291

    CrossRef Google Scholar

    [6] M. M. Chawla and P. N. Shivkumar, On the existence of solutions of a class of singular nonlinear two-point boundary value problems, J. Comput. Appl. Math., 1987, 19(3), 379-388. doi: 10.1016/0377-0427(87)90206-8

    CrossRef Google Scholar

    [7] M. M. Chawla and R. Subramanian, A new spline method for singular two-point boundary value problems, Int. J. Comput. Math., 1988, 24(3-4), 291-310. doi: 10.1080/00207168808803650

    CrossRef Google Scholar

    [8] M. M. Chawla and C. P. Katti, A uniform mesh finite difference method for a class of singular two-point boundary value problems, SIAM J. Numer. Anal., 1985, 22(3), 561-565. doi: 10.1137/0722033

    CrossRef Google Scholar

    [9] M. Danish, S. Kumar and S. Kumar, A note on the solution of singular boundary value problems arising in engineering and applied sciences: Use of Oham, Comput. Chem. Eng., 2012, 36, 57-67. doi: 10.1016/j.compchemeng.2011.08.008

    CrossRef Google Scholar

    [10] M. H. Daliri and J. Saberi-Nadjafi, Improved variational iteration method for solving a class of nonlinear Fredholm integral equations, SeMA, 1018. DOI: https://doi.org/10.1007/s40324-018-0161-5.

    CrossRef Google Scholar

    [11] A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math., 2011, 235(8), 1914-1924. doi: 10.1016/j.cam.2010.09.007

    CrossRef Google Scholar

    [12] M. A. El-Gebeily and A. Boumenir, Existence of a class boundary and uniqueness of solutions of two-point singular nonlinear value problems, J. Comp. Appl. Math., 1993, 46(3), 345-355. doi: 10.1016/0377-0427(93)90031-6

    CrossRef Google Scholar

    [13] A. Ghorbani and H. Passandideh, The modified VIM for certain type of the nonlinear two-point boundary value problems, Int. J. Comp. Meth., 2018. DOI: 10.1142/S0219876218501311.

    CrossRef Google Scholar

    [14] J. H. He, Variational iteration method a kind of nonlinear analytical technique: Some examples, Int. J. Non-Linear Mech., 1999, 34(4), 699-708. doi: 10.1016/S0020-7462(98)00048-1

    CrossRef Google Scholar

    [15] J. H. He, Variational iteration method : Some recent results and new interpretations, J. Comput. Appl. Math., 2007, 207(1), 3-17. doi: 10.1016/j.cam.2006.07.009

    CrossRef Google Scholar

    [16] J. H. He and X. H. Wu, Variational Iteration Method: New development and applications, Comput. Math. Appl., 2007, 54(7-8), 881-894. doi: 10.1016/j.camwa.2006.12.083

    CrossRef Google Scholar

    [17] M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in non-linear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in the Mechanics of Solids, Pergamon Press, Oxford, 1978, 156-162.

    Google Scholar

    [18] V. F. Kirichenko and V. A. Krys'ko, Substantiation of the variational method in the theory of plates, Int. Appl. Mech., 1981, 17(4), 366-370.

    Google Scholar

    [19] S. A. Khuri and A. Sayfy, A Laplace variational iteration strategy for the solution of differential equations, Appl. Math. Lett. 2012, 25(12), 2298-2305. doi: 10.1016/j.aml.2012.06.020

    CrossRef Google Scholar

    [20] S. A. Khuri and A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comput. Model. 2010, 52(3-4), 626-636. doi: 10.1016/j.mcm.2010.04.009

    CrossRef Google Scholar

    [21] S. A. Khuri and A. Sayfy, A Two fold Spline Chebyshev Linearization Approach for a Class of Singular Second-Order Nonlinear Differential Equations, Results. Math., 2013, 63(3-4), 817-835. doi: 10.1007/s00025-012-0235-0

    CrossRef Google Scholar

    [22] S. A. Khuri and A. Sayfy, Self-adjoint singularly perturbed second-order twopoint boundary value problems: A patching approach, Appl. Math. Model., 2014, 38(11-12), 2901-2914. doi: 10.1016/j.apm.2013.11.016

    CrossRef Google Scholar

    [23] J. B. Keller, Electrohydrodynamics I. The equilibrium of a charged gas in a container, J. Rational Mech. Anal., 1956, 5(4), 715-724.

    Google Scholar

    [24] S. Noeiaghdam, A novel technique to solve the modified epidemiological model of computer viruses, SeMA, 2018. https://doi.org/10.1007/s40324-018-0163-3. doi: 10.1007/s40324-018-0163-3

    CrossRef Google Scholar

    [25] S. V. Parter, Numerical methods for generalized axially symmetric potentials, SIAM J., Series- B Numerical Analysis, 1965, 2(3), 500-516.

    Google Scholar

    [26] R. K. Pandey and A. K. Verma, Existence-uniqueness results for a class of singular boundary value problems arising in physiology, Nonlinear Anal. RWA, 2008, 9(1), 40-52. doi: 10.1016/j.nonrwa.2006.09.001

    CrossRef Google Scholar

    [27] R. K. Pandey and A. K. Verma, Existence-uniqueness results for a class of singular boundary value problems-Ⅱ, J. Math. Anal. Appl., 2008, 338(2), 1387- 1396. doi: 10.1016/j.jmaa.2007.06.024

    CrossRef Google Scholar

    [28] R. K. Pandey, A finite difference method for a class of singular two-point boundary value problems arising in physiology, Int. J. Comput. Math., 1997, 65(1-2), 131-140. doi: 10.1080/00207169708804603

    CrossRef Google Scholar

    [29] R. K. Pandey and A. K. Singh, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 2004, 166(2), 553-564.

    Google Scholar

    [30] R. K. Pandey and A. K. Singh, On the convergence of a fourth-order method for a class of singular boundary value problems, J. Comput. Appl. Math., 2009, 224(2), 734-742. doi: 10.1016/j.cam.2008.06.005

    CrossRef Google Scholar

    [31] A. S. V. Ravi Kanth and K. Aruna, He's variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 2010, 60(3), 821-829. doi: 10.1016/j.camwa.2010.05.029

    CrossRef Google Scholar

    [32] A. S. V. Ravi Kanth and V. Bhattacharya, Cubic spline for a class of non-linear singular boundary value problems arising in physiology, Appl. Math. Comput., 2006, 174(1), 768-774.

    Google Scholar

    [33] R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems, SlAM J. Numer. Anal., 1975, 12(1), 13-36.

    Google Scholar

    [34] J. Rashidinia, R. Mohammadi and R. Jalilian, The numerical solution of nonlinear singular boundary value problems arising in physiology, Appl. Math. Comput., 2007, 185(1), 360-367.

    Google Scholar

    [35] T. E. Schunk, Zur Knicldestigkeit schwach gekrlimr, ter zylindrlscher Schalen, Ing. Arch., 1933, 4, 394-414. doi: 10.1007/BF02081563

    CrossRef Google Scholar

    [36] L. A. Soltani and A. Shirzadi, A new modification of the variational iteration method, Comput. Math. Appl., 2010, 59(8), 2528-2535. doi: 10.1016/j.camwa.2010.01.012

    CrossRef Google Scholar

    [37] M. Singh and A. K. Verma, An effective computational technique for a class of Lane-Emden equations, J. Math. Chem., 2016, 54(1), 231-251. doi: 10.1007/s10910-015-0557-8

    CrossRef Google Scholar

    [38] M. Singh and A. K. Verma and Ravi P. Agarwal, Maximum and anti-maximum principles for three point SBVPs and nonlinear three point SBVPs, J Appl. Math. Comput., 2015, 47(1-2), 249-263. doi: 10.1007/s12190-014-0773-6

    CrossRef Google Scholar

    [39] A. K. Verma and M. Singh, Singular Nonlinear 3 Point BVPs arising in Thermal Explosion in a Cylindrical Reactor, J. Math. Chem., 2015, 53(2), 670-684. doi: 10.1007/s10910-014-0447-5

    CrossRef Google Scholar

    [40] A. M. Wazwaz, The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(10), 3881-3886. doi: 10.1016/j.cnsns.2011.02.026

    CrossRef Google Scholar

    [41] E. E. Zhukov, A variational technique of successive approximations in application to the calculation of thin rectangular slabs, in: Analysis of Thin-Walled Space Structure[in Russian] (A. R. Rzhanitsin, ed.), Stroiizdat, Moscow, 1964, 27-35.

    Google Scholar

    [42] X. Zhang, F. A. Shah, Y. Li, L. Yan, A. Q. Baig and M. R. Farahani, A family of fifth-order convergent methods for solving nonlinear equations using variational iteration technique, J. Inform. Optim. Sci., 2018, 39(3), 673-694.

    Google Scholar

    [43] M. Zellal and K. Belghaba, An accurate algorithm for solving biological population model by the variational iteration method using He' s polynomials, Arab J. Basic Appl. Sci., 2018, 25(3), 142-149. doi: 10.1080/25765299.2018.1510566

    CrossRef Google Scholar

Figures(3)  /  Tables(10)

Article Metrics

Article views(2512) PDF downloads(961) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint