[1]
|
N. Anderson and A. M. Arthurs, Complementary variational principles for diffusion problems with Michalelis-Menten kinetics, Bull. Math. Biol., 1980, 42(1), 131-135. doi: 10.1007/BF02462371
CrossRef Google Scholar
|
[2]
|
G. Adomian and R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl. 1983, 91(1), 39-46. doi: 10.1016/0022-247X(83)90090-2
CrossRef Google Scholar
|
[3]
|
G. Adomian and R. Rach, Modified decomposition solution of linear and nonlinear boundary-value problems, Nonlinear Anal. TMA 1994, 23(5), 615-619. doi: 10.1016/0362-546X(94)90240-2
CrossRef Google Scholar
|
[4]
|
S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1967.
Google Scholar
|
[5]
|
P. L. Chamber, On the solution of the Poisson-Boltzmann equation with the application to the theory of thermal explosions, J. Chem. Phys., 1952, 20(11), 1795-1797. doi: 10.1063/1.1700291
CrossRef Google Scholar
|
[6]
|
M. M. Chawla and P. N. Shivkumar, On the existence of solutions of a class of singular nonlinear two-point boundary value problems, J. Comput. Appl. Math., 1987, 19(3), 379-388. doi: 10.1016/0377-0427(87)90206-8
CrossRef Google Scholar
|
[7]
|
M. M. Chawla and R. Subramanian, A new spline method for singular two-point boundary value problems, Int. J. Comput. Math., 1988, 24(3-4), 291-310. doi: 10.1080/00207168808803650
CrossRef Google Scholar
|
[8]
|
M. M. Chawla and C. P. Katti, A uniform mesh finite difference method for a class of singular two-point boundary value problems, SIAM J. Numer. Anal., 1985, 22(3), 561-565. doi: 10.1137/0722033
CrossRef Google Scholar
|
[9]
|
M. Danish, S. Kumar and S. Kumar, A note on the solution of singular boundary value problems arising in engineering and applied sciences: Use of Oham, Comput. Chem. Eng., 2012, 36, 57-67. doi: 10.1016/j.compchemeng.2011.08.008
CrossRef Google Scholar
|
[10]
|
M. H. Daliri and J. Saberi-Nadjafi, Improved variational iteration method for solving a class of nonlinear Fredholm integral equations, SeMA, 1018. DOI: https://doi.org/10.1007/s40324-018-0161-5.
CrossRef Google Scholar
|
[11]
|
A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math., 2011, 235(8), 1914-1924. doi: 10.1016/j.cam.2010.09.007
CrossRef Google Scholar
|
[12]
|
M. A. El-Gebeily and A. Boumenir, Existence of a class boundary and uniqueness of solutions of two-point singular nonlinear value problems, J. Comp. Appl. Math., 1993, 46(3), 345-355. doi: 10.1016/0377-0427(93)90031-6
CrossRef Google Scholar
|
[13]
|
A. Ghorbani and H. Passandideh, The modified VIM for certain type of the nonlinear two-point boundary value problems, Int. J. Comp. Meth., 2018. DOI: 10.1142/S0219876218501311.
CrossRef Google Scholar
|
[14]
|
J. H. He, Variational iteration method a kind of nonlinear analytical technique: Some examples, Int. J. Non-Linear Mech., 1999, 34(4), 699-708. doi: 10.1016/S0020-7462(98)00048-1
CrossRef Google Scholar
|
[15]
|
J. H. He, Variational iteration method : Some recent results and new interpretations, J. Comput. Appl. Math., 2007, 207(1), 3-17. doi: 10.1016/j.cam.2006.07.009
CrossRef Google Scholar
|
[16]
|
J. H. He and X. H. Wu, Variational Iteration Method: New development and applications, Comput. Math. Appl., 2007, 54(7-8), 881-894. doi: 10.1016/j.camwa.2006.12.083
CrossRef Google Scholar
|
[17]
|
M. Inokuti, H. Sekine and T. Mura, General use of the Lagrange multiplier in non-linear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in the Mechanics of Solids, Pergamon Press, Oxford, 1978, 156-162.
Google Scholar
|
[18]
|
V. F. Kirichenko and V. A. Krys'ko, Substantiation of the variational method in the theory of plates, Int. Appl. Mech., 1981, 17(4), 366-370.
Google Scholar
|
[19]
|
S. A. Khuri and A. Sayfy, A Laplace variational iteration strategy for the solution of differential equations, Appl. Math. Lett. 2012, 25(12), 2298-2305. doi: 10.1016/j.aml.2012.06.020
CrossRef Google Scholar
|
[20]
|
S. A. Khuri and A. Sayfy, A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comput. Model. 2010, 52(3-4), 626-636. doi: 10.1016/j.mcm.2010.04.009
CrossRef Google Scholar
|
[21]
|
S. A. Khuri and A. Sayfy, A Two fold Spline Chebyshev Linearization Approach for a Class of Singular Second-Order Nonlinear Differential Equations, Results. Math., 2013, 63(3-4), 817-835. doi: 10.1007/s00025-012-0235-0
CrossRef Google Scholar
|
[22]
|
S. A. Khuri and A. Sayfy, Self-adjoint singularly perturbed second-order twopoint boundary value problems: A patching approach, Appl. Math. Model., 2014, 38(11-12), 2901-2914. doi: 10.1016/j.apm.2013.11.016
CrossRef Google Scholar
|
[23]
|
J. B. Keller, Electrohydrodynamics I. The equilibrium of a charged gas in a container, J. Rational Mech. Anal., 1956, 5(4), 715-724.
Google Scholar
|
[24]
|
S. Noeiaghdam, A novel technique to solve the modified epidemiological model of computer viruses, SeMA, 2018. https://doi.org/10.1007/s40324-018-0163-3. doi: 10.1007/s40324-018-0163-3
CrossRef Google Scholar
|
[25]
|
S. V. Parter, Numerical methods for generalized axially symmetric potentials, SIAM J., Series- B Numerical Analysis, 1965, 2(3), 500-516.
Google Scholar
|
[26]
|
R. K. Pandey and A. K. Verma, Existence-uniqueness results for a class of singular boundary value problems arising in physiology, Nonlinear Anal. RWA, 2008, 9(1), 40-52. doi: 10.1016/j.nonrwa.2006.09.001
CrossRef Google Scholar
|
[27]
|
R. K. Pandey and A. K. Verma, Existence-uniqueness results for a class of singular boundary value problems-Ⅱ, J. Math. Anal. Appl., 2008, 338(2), 1387- 1396. doi: 10.1016/j.jmaa.2007.06.024
CrossRef Google Scholar
|
[28]
|
R. K. Pandey, A finite difference method for a class of singular two-point boundary value problems arising in physiology, Int. J. Comput. Math., 1997, 65(1-2), 131-140. doi: 10.1080/00207169708804603
CrossRef Google Scholar
|
[29]
|
R. K. Pandey and A. K. Singh, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 2004, 166(2), 553-564.
Google Scholar
|
[30]
|
R. K. Pandey and A. K. Singh, On the convergence of a fourth-order method for a class of singular boundary value problems, J. Comput. Appl. Math., 2009, 224(2), 734-742. doi: 10.1016/j.cam.2008.06.005
CrossRef Google Scholar
|
[31]
|
A. S. V. Ravi Kanth and K. Aruna, He's variational iteration method for treating nonlinear singular boundary value problems, Comput. Math. Appl., 2010, 60(3), 821-829. doi: 10.1016/j.camwa.2010.05.029
CrossRef Google Scholar
|
[32]
|
A. S. V. Ravi Kanth and V. Bhattacharya, Cubic spline for a class of non-linear singular boundary value problems arising in physiology, Appl. Math. Comput., 2006, 174(1), 768-774.
Google Scholar
|
[33]
|
R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems, SlAM J. Numer. Anal., 1975, 12(1), 13-36.
Google Scholar
|
[34]
|
J. Rashidinia, R. Mohammadi and R. Jalilian, The numerical solution of nonlinear singular boundary value problems arising in physiology, Appl. Math. Comput., 2007, 185(1), 360-367.
Google Scholar
|
[35]
|
T. E. Schunk, Zur Knicldestigkeit schwach gekrlimr, ter zylindrlscher Schalen, Ing. Arch., 1933, 4, 394-414. doi: 10.1007/BF02081563
CrossRef Google Scholar
|
[36]
|
L. A. Soltani and A. Shirzadi, A new modification of the variational iteration method, Comput. Math. Appl., 2010, 59(8), 2528-2535. doi: 10.1016/j.camwa.2010.01.012
CrossRef Google Scholar
|
[37]
|
M. Singh and A. K. Verma, An effective computational technique for a class of Lane-Emden equations, J. Math. Chem., 2016, 54(1), 231-251. doi: 10.1007/s10910-015-0557-8
CrossRef Google Scholar
|
[38]
|
M. Singh and A. K. Verma and Ravi P. Agarwal, Maximum and anti-maximum principles for three point SBVPs and nonlinear three point SBVPs, J Appl. Math. Comput., 2015, 47(1-2), 249-263. doi: 10.1007/s12190-014-0773-6
CrossRef Google Scholar
|
[39]
|
A. K. Verma and M. Singh, Singular Nonlinear 3 Point BVPs arising in Thermal Explosion in a Cylindrical Reactor, J. Math. Chem., 2015, 53(2), 670-684. doi: 10.1007/s10910-014-0447-5
CrossRef Google Scholar
|
[40]
|
A. M. Wazwaz, The variational iteration method for solving nonlinear singular boundary value problems arising in various physical models, Commun. Nonlinear Sci. Numer. Simul., 2011, 16(10), 3881-3886. doi: 10.1016/j.cnsns.2011.02.026
CrossRef Google Scholar
|
[41]
|
E. E. Zhukov, A variational technique of successive approximations in application to the calculation of thin rectangular slabs, in: Analysis of Thin-Walled Space Structure[in Russian] (A. R. Rzhanitsin, ed.), Stroiizdat, Moscow, 1964, 27-35.
Google Scholar
|
[42]
|
X. Zhang, F. A. Shah, Y. Li, L. Yan, A. Q. Baig and M. R. Farahani, A family of fifth-order convergent methods for solving nonlinear equations using variational iteration technique, J. Inform. Optim. Sci., 2018, 39(3), 673-694.
Google Scholar
|
[43]
|
M. Zellal and K. Belghaba, An accurate algorithm for solving biological population model by the variational iteration method using He' s polynomials, Arab J. Basic Appl. Sci., 2018, 25(3), 142-149. doi: 10.1080/25765299.2018.1510566
CrossRef Google Scholar
|