[1]
|
L. J. Allen, F. Brauer, P. Van den Driessche and J. Wu, Mathematical epidemiology, Vol. 1945, Springer, 2008.
Google Scholar
|
[2]
|
R. Antia, B. R. Levin and R. M. May, Within-host population dynamics and the evolution and maintenance of microparasite virulence, American Naturalist, (1994), 457-472.
Google Scholar
|
[3]
|
R. Antia, B. Levin and P. Williamson, A quantitative model suggests immune memory involves the colocalization of b and th cells, Journal of theoretical biology, 153(3)(1991), 371-384.
Google Scholar
|
[4]
|
R. Antia and M. Lipsitch, Mathematical models of parasite responses to host immune defences, Parasitology, 115(07)(1997), 155-167.
Google Scholar
|
[5]
|
R. M. Anderson, Mathematical studies of parasitic infection and immunity, Science, 264(5167)(1994), 1884-1886.
Google Scholar
|
[6]
|
R. J.de Boer and M. C. Boerlijst, Diversity and virulence thresholds in aids, Proceedings of the National Academy of Sciences, 91(2)(1994), 544-548.
Google Scholar
|
[7]
|
D. Coombs, M. A. Gilchrist and C. L. Ball, Evaluating the importance of withinand between-host selection pressures on the evolution of chronic pathogens, Theoretical population biology, 72(4)(2007), 576-591.
Google Scholar
|
[8]
|
O. Diekmann, J. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, Journal of mathematical biology, 28(4)(1990), 365-382.
Google Scholar
|
[9]
|
S. DebRoy, B. M. Bolker and M. Martcheva, Bistability and long-term cure in a within-host model of hepatitis c, Journal of Biological Systems, 19(04) (2011), 533-550.
Google Scholar
|
[10]
|
M. A. Gilchrist and A. Sasaki, Modeling host-parasite coevolution:a nested approach based on mechanistic models, Journal of Theoretical Biology, 218(3) (2002), 289-308.
Google Scholar
|
[11]
|
R. M. Granich, C. F.Gilks, C. Dye, K. M.De Cock and B. G. Williams, Universal voluntary hiv testing and immediate antiretroviral therapy-authors' reply, The Lancet, 373(9669)(2009), 1080-1081.
Google Scholar
|
[12]
|
V. V. Ganusov, C. T. Bergstrom and R. Antia, Within-host population dynamics and the evolution of microparasites in a heterogeneous host population, Evolution, 56(2)(2002), 213-223.
Google Scholar
|
[13]
|
H. W. Hethcote, The mathematics of infectious diseases, SIAM review, 42(4) (2000), 599-653.
Google Scholar
|
[14]
|
M. Kaufman, J. Urbain and R. Thomas, Towards a logical analysis of the immune response,Journal of theoretical biology, 114(4)(1985), 527-561.
Google Scholar
|
[15]
|
J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, Journal of mathematical biology, 65(4)(2012), 623-652.
Google Scholar
|
[16]
|
X. Li, H. Lu, H. Raymond, Y. Sun, Y. Jia, X. He, S. Fan, Y. Shao, W. McFarland, Y. Xiao, et al., Untested and undiagnosed:barriers to hiv testing among men who have sex with men, beijing, china, Sexually transmitted infections.
Google Scholar
|
[17]
|
Y. Li, S. Ruan and D. Xiao, The within-host dynamics of malaria infection with immune response, Mathematical Biosciences and Engineering, 8(4)(2011), 999-1018.
Google Scholar
|
[18]
|
M. Martcheva and X.-Z. Li, Linking immunological and epidemiological dynamics of hiv:the case of super-infection, Journal of biological dynamics, 7(1)(2013), 161-182.
Google Scholar
|
[19]
|
N. Mideo, S. Alizon and T. Day, Linking within-and between-host dynamics in the evolutionary epidemiology of infectious diseases, Trends in ecology evolution, 23(9)(2008), 511-517.
Google Scholar
|
[20]
|
M. A. Nowak, R. M. May and R. M. Anderson, The evolutionary dynamics of hiv-1 quasispecies and the development of immunodeficiency disease, Aids, 4(11)(1990), 1095-1104.
Google Scholar
|
[21]
|
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of hiv infection of cd4 T cells, Mathematical biosciences, 114(1)(1993), 81-125.
Google Scholar
|
[22]
|
T. C. Porco, J. N. Martin, K. A. Page-Shafer, A. Cheng, E. Charlebois, R. M. Grant and D. H. Osmond, Decline in hiv infectivity following the introduction of highly active antiretroviral therapy, AIDS (London, England), 18(1)(2004), 81.
Google Scholar
|
[23]
|
E. Szathmary and J. Maynard Smith, The Major Transitions in Evolution, Oxford University Press, 2004.
Google Scholar
|
[24]
|
A. Sasaki and Y. Iwasa, Optimal growth schedule of pathogens within a host:switching between lytic and latent cycles, Theoretical population biology, 39(2)(1991), 201-239.
Google Scholar
|