2021 Volume 11 Issue 2
Article Contents

Ting Tan, Jing An. AN EFFICIENT NUMERICAL METHOD BASED ON LEGENDRE-GALERKIN APPROXIMATION FOR THE STEKLOV EIGENVALUE PROBLEM IN SPHERICAL DOMAIN[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 587-601. doi: 10.11948/20180104
Citation: Ting Tan, Jing An. AN EFFICIENT NUMERICAL METHOD BASED ON LEGENDRE-GALERKIN APPROXIMATION FOR THE STEKLOV EIGENVALUE PROBLEM IN SPHERICAL DOMAIN[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 587-601. doi: 10.11948/20180104

AN EFFICIENT NUMERICAL METHOD BASED ON LEGENDRE-GALERKIN APPROXIMATION FOR THE STEKLOV EIGENVALUE PROBLEM IN SPHERICAL DOMAIN

  • We present in this paper an efficient numerical method based on Legendre-Galerkin approximation for the Steklov eigenvalue problem in spherical domain. Firstly, by means of spherical coordinate transformation and spherical harmonic expansion, the original problem is reduced to a sequence of equivalent one-dimensional eigenvalue problems that can be solved individually in parallel. Through the introduction of the appropriate weighted Sobolev spaces, the weak form and corresponding discrete scheme are established for each one-dimensional eigenvalue problem. Then from the approximate property of orthogonal polynomials in the weighted Sobolev spaces, we prove the error estimates of approximate eigenvalues for each one dimensional eigenvalue problem. Finally, some numerical examples are provided to illustrate the validity of our algorithms.

    MSC: 65N35, 65N25
  • 加载中
  • [1] A. B. Andreev and T. D. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA Journal of Numerical Analysis, 2004, 24, 309–322. doi: 10.1093/imanum/24.2.309

    CrossRef Google Scholar

    [2] M. G. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem, Appl. Numer. Math., 2008, 58, 593–601. doi: 10.1016/j.apnum.2007.01.011

    CrossRef Google Scholar

    [3] A. Alonso and A. D. Russo, Special approximation of variationally-posed eigenvalue problem by nonconforming methods, J. Comput. Appl. Math., 2009, 223(1), 177–197. doi: 10.1016/j.cam.2008.01.008

    CrossRef Google Scholar

    [4] H. J. Ahn, Vibration of a pendulum consistiting of a bob suspended from a wire: the method of integral equations, Quart. Appl. Math., 1981, 39, 109–117. doi: 10.1090/qam/613954

    CrossRef Google Scholar

    [5] S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, New York, Academic Press, 1953.

    Google Scholar

    [6] A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations, Numer. Math., 2000, 87(2), 201–227. doi: 10.1007/s002110000175

    CrossRef Google Scholar

    [7] H. Bi and Y. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 2011, 217, 9669–9678.

    Google Scholar

    [8] H. Bi and Y. Yang, Multi-scale discretization scheme based on the Rayleigh quotient iterative method for the Steklov eigenvalue problems, Math. Prob. Eng., 2012, 539–551.

    Google Scholar

    [9] D. Bucur and I. Ionescu, Asymptotic analysis and scaling of friction parameters, Z. Angew. Math. Phys. (ZAMP), 2006, 57, 1–15. doi: 10.1007/s00033-006-0070-9

    CrossRef Google Scholar

    [10] A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., Rio de Janeiro, 1980, 65–73.

    Google Scholar

    [11] C. Conca, J. Planchard and M. Vanninathanm, Fluid and Periodic Structures, New York, John Wiley & Sons, 1995.

    Google Scholar

    [12] L. Cao, L. Zhang, W. Allegretto and Y. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J. Numer. Anal., 2013, 51(1), 273–296. doi: 10.1137/110850876

    CrossRef Google Scholar

    [13] J. F. Escobar, A comparison theorem for the first non-zero Steklov eigenvalue, J. Funct. Anal., 2000, 178(1), 143–155. doi: 10.1006/jfan.2000.3662

    CrossRef Google Scholar

    [14] E. M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J Numer. Anal., 2011, 31, 914–946. doi: 10.1093/imanum/drp055

    CrossRef Google Scholar

    [15] D. B. Hinton and J. K. Shaw, Differential operators with spectral parameter incompletely in the boundary conditions, Funkc. Ekvacioj, Ser. Int., 1990, 33, 363–385.

    Google Scholar

    [16] X. Han, Y. Li and H. Xie, A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods, Numer. Math-Theory Me., 2015, 8(03), 383–405.

    Google Scholar

    [17] Q. Lin and H. Xie, A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems, Proceedings of the International Conference Applications of Mathematics, 2012, 134–143.

    Google Scholar

    [18] M. Li, Q. Lin and S. Zhang, Extrapolation and superconvergence of the Steklov eigenvalue problems, Adv. Comput. Math., 2010, 33, 25–44. doi: 10.1007/s10444-009-9118-7

    CrossRef Google Scholar

    [19] Q. Li and Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 2011, 36, 129–139. doi: 10.1007/s12190-010-0392-9

    CrossRef Google Scholar

    [20] Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations, Appl. Numer. Math., 2013, 58, 129–151. doi: 10.1007/s10492-013-0007-5

    CrossRef Google Scholar

    [21] L. Ma, J. Shen and L. Wang, Spectral approximation of time-harmonic Maxwell equations in three-dimensional exterior domains, Int. J. Numer. Anal. Mod., 2015, 12(2), 1–18.

    Google Scholar

    [22] M. Min and D. Gottlieb, On the convergence of the Fourier approximation for eigenvalues and eigenfunctions of discontinuous problems, SIAM J. Numer. Anal., 2003, 40(6), 2254–2269.

    Google Scholar

    [23] J. Shen and T. Tang, Spectral and high-order methods with applications, Science Press, 2006.

    Google Scholar

    [24] J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Science and Business Media, 2011.

    Google Scholar

    [25] W. Tang, Z. Guan and H. Han, Boundary element approximation of Steklov eigenvalue problem for Helmhooltz equation, J. Comput. Math., 1998, 16, 165– 178.

    Google Scholar

    [26] H. Xie, A type of multilevel method for the Steklov eigenvalue problem, IMA J. Numer. Anal., 2014, 34(2), 592–608. doi: 10.1093/imanum/drt009

    CrossRef Google Scholar

    [27] Y. Yang, Q. Li and S. Li, Nonconforming finite element approximations for the Stelov eigenvalue problem, Appl. Numer. Math., 2009, 59, 2388–2401. doi: 10.1016/j.apnum.2009.04.005

    CrossRef Google Scholar

    [28] X. Zhang, Y. Yang and H. Bi, Spectral method with the tensor-product nodal basis for the Steklov eigenvalue problem, Math. Prob. Eng., 2013, 206–232.

    Google Scholar

Figures(9)  /  Tables(1)

Article Metrics

Article views(2817) PDF downloads(482) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint