Citation: | Xijun Deng, Aiyong Chen. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF TRAVELING WAVES IN A HOST-VECTOR EPIDEMIC MODEL[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 602-613. doi: 10.11948/20180197 |
In this paper, we are concerned with a diffusive host-vector epidemic model with a nonlocal spatiotemporal interaction. When the delay kernel takes some special form, by employing linear chain techniques and geometric singular perturbation theory, we establish the existence of travelling front solutions connecting the two spatially uniform steady states for sufficiently small delays. Furthermore, by employing standard asymptotic theory, we also obtain the asymptotic behavior of traveling wave fronts of this model.
[1] | P. B. Ashwin, M. V. Bartuccelli and T. J. Bridges, Traveling fronts for the KPP equation with spatio-temporal delay, Z. Angew. Math. Phys., 2002, 53, 103–122. doi: 10.1007/s00033-002-8145-8 |
[2] | C. Conley and R. Gardner, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 1973, 4, 65–81. |
[3] | Z. Du, J. Li and X. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Fun. Anal., 2018, 275(4), 988–1007. doi: 10.1016/j.jfa.2018.05.005 |
[4] | N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 1979, 31, 53–98. doi: 10.1016/0022-0396(79)90152-9 |
[5] | S. A. Gourley, Travelling fronts in the diffusive Nicholson's blowflies equation with distributed delays, Math. Comput. Model., 2000, 32, 843–853. doi: 10.1016/S0895-7177(00)00175-8 |
[6] | S. A. Gourley and S. Ruan, Spatio-temporal delays in a nutrient-plankton model on a finite domain: linear stability and bifurcations, Appl. Math. Comput., 2003, 145, 391–412. |
[7] | S. A. Gourley and M. A. J. Chaplain, Traveling fronts in a food-limited population model with time delay., Proc. R. Soc. Edinb. Sect. A, 2002, 32, 75–89. |
[8] | S. A. Gourley and S. Ruan, Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model, SIAM J. Math. Anal., 2003, 35, 806–822. doi: 10.1137/S003614100139991 |
[9] | C. K. R. T. Johns, Geometrical singular perturbation theory, In: Johnson, R. (ed. ) Dynamical Systems, Lecture Notes in Mathematics, Springer, New York, 1995, 1609. |
[10] | X. Li, F. Meng and Z. Du, Traveling Wave Solutions of a Fourth-order Generalized Dispersive and Dissipative Equation, J. Nonlinear Model. Anal., 2019, 1(3), 307–318. |
[11] | G. Lv and M. Wang, Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model, Nonlinear Anal. RWA, 2010, 11, 2035– 2043. doi: 10.1016/j.nonrwa.2009.05.006 |
[12] | C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model, SIAM J. Math. Anal., 2007, 39, 103–125. doi: 10.1137/050638011 |
[13] | M. A. Pozio, Behaviour of solutions of some abstract functional differential equations and applications to predator-prey dynamics, Nonlin. Anal., 1980, 4, 917–938. doi: 10.1016/0362-546X(80)90005-X |
[14] | H. L. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31, 514–534. doi: 10.1137/S0036141098346785 |
[15] | V. Volpert, Elliptic Partial Differential Equations, Volume 1, Fredholm Theory of Elliptic Problems in Unbounded Domains, Monographs in Mathematics 101, Birkhauser: Basel, Switzerland, 2011. |
[16] | C. Wu and P. Weng, Stability of steady states and existence of traveling waves for a host-vector epidemic, Inter. J. Bifur. Chaos, 2011, 21(6), 1667–1687. doi: 10.1142/S0218127411029355 |
[17] | J. Wei et al., Existence and asymptotic behavior of traveling wave fronts for a food-limited population model with spatio-temporal delay, Japan J. Indust. Appl. Math., 2017, 34, 305–320. doi: 10.1007/s13160-017-0244-1 |
[18] | J. Wei, J. Zhou and L. Tian, Existence and asymptotic behavior of traveling wave solution for Korteweg-de Vries-Burgers equation with distributed delay, J. Appl. Anal. Comput., 2019, 9(3), 840–852. |
[19] | C. Xu, Y. Wu, L. Tian and B. Guo, On kink and anti-kink wave solutions of Schrodinger equation with distributed delay, J. Appl. Anal. Comput., 2018, 8(5), 1385–1395. |
[20] | Y. Xu, Z. Du and L. Wei, Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation, Nonlinear Dyn., 2016, 83, 65–73. doi: 10.1007/s11071-015-2309-5 |