2019 Volume 9 Issue 5
Article Contents

Xiuyan Li, Qiang Ma, Xiaohua Ding. STOCHASTIC PARTITIONED AVERAGED VECTOR FIELD METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH A CONSERVED QUANTITY[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1663-1685. doi: 10.11948/20180254
Citation: Xiuyan Li, Qiang Ma, Xiaohua Ding. STOCHASTIC PARTITIONED AVERAGED VECTOR FIELD METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH A CONSERVED QUANTITY[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1663-1685. doi: 10.11948/20180254

STOCHASTIC PARTITIONED AVERAGED VECTOR FIELD METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH A CONSERVED QUANTITY

  • Corresponding author: Email address: lixiuyan@sdu.edu.cn(X. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11501150) and the Key Project of Science and Technology of Weihai (No. 2014DXGJ14)
  • In this paper, stochastic differential equations in the Stratonovich sense with a conserved quantity are considered. A stochastic partitioned averaged vector field method is proposed and analyzed. We prove this numerical method is able to preserve the conserved quantity of the original system. Then the convergence analysis is carried out in detail and we derive the method is convergent with order 1 in the mean-square sense. Finally some numerical examples are reported to verify the effectiveness and flexibility of the proposed method.
    MSC: 60H10, 65C20, 65C30
  • 加载中
  • [1] L. Brugnano, F. Iavernaro and D. Trigiante, Energy and quadratic invariants-preserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 2012, 50(6), 2897-2916. doi: 10.1137/110856617

    CrossRef Google Scholar

    [2] K. Burrage and P. M. Burrage, High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Appl. Numer. Math., 1996, 22(1-3), 81-101. doi: 10.1016/S0168-9274(96)00027-X

    CrossRef Google Scholar

    [3] K. Burrage, P. M. Burrage and T. Tian, Numerical methods for strong solutions of stochastic differential equations: an overview, Proc. R. Soc. Lond. Ser. A, 2004, 460, 373-402. doi: 10.1098/rspa.2003.1247

    CrossRef Google Scholar

    [4] W. Cai, H. Li and Y. Wang, Partitioned averaged vector field methods, J. Comput. Phy., 2018, 370, 25-42. doi: 10.1016/j.jcp.2018.05.009

    CrossRef Google Scholar

    [5] C. Chen, D. Cohen and J. Hong, Conservative methods for stochastic differential equations with a conserved quantity, Int. J. Numer. Anal. Mod., 2016, 13, 435-456.

    Google Scholar

    [6] Y. Chen, Y. Sun and Y. Tang, Energy-preserving numerical methods for Landau-Lifshitz equation, J. Phys. A: Math. Theor., 2011, 44(29), 295207. doi: 10.1088/1751-8113/44/29/295207

    CrossRef Google Scholar

    [7] D. Cohen, G. Dujardin, Energy-preserving integrators for stochastic Poisson systems, Commun. Math. Sci., 2014, 12(8), 1523-1539. doi: 10.4310/CMS.2014.v12.n8.a7

    CrossRef Google Scholar

    [8] X. Ding, Q. Ma and L. Zhang, Convergence and stability of the split-step θ-method for stochastic differential equations, Comput. Math. Appl., 2010, 60(5), 1310-1321. doi: 10.1016/j.camwa.2010.06.011

    CrossRef Google Scholar

    [9] G. D. Fabritiis, M. Serrano, P. Español and P.V. Conency, Efficient numerical integrators for stochastic models, Phys. A, 2006, 361(2), 429-440. doi: 10.1016/j.physa.2005.06.090

    CrossRef Google Scholar

    [10] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer-Verlag, Berlin, 2006.

    Google Scholar

    [11] J. Hong, D. Xu and P. Wang, Preservation of quadratic invariants of stochastic differential equations via Runge-Kutta methods, Appl. Numer. Math., 2015, 87, 38-52. doi: 10.1016/j.apnum.2014.08.003

    CrossRef Google Scholar

    [12] J. Hong, S. Zhai and J. Zhang, Discrete gradient approach to stochastic differential equations with a conserved quantity, SIAM J. Numer. Anal., 2011, 49(5), 2017-2038. doi: 10.1137/090771880

    CrossRef Google Scholar

    [13] C. Huang, Exponential mean square stability of numerical methods for systems of stochastic differential equations, J. Comput. Appl. Math., 2012, 236(16), 4016-4026. doi: 10.1016/j.cam.2012.03.005

    CrossRef Google Scholar

    [14] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.

    Google Scholar

    [15] H. Li, Y. Wang and M. Qin, A sixth order averaged vector field method, J. Comput. Math., 2016, 34(5), 479-498. doi: 10.4208/jcm.1601-m2015-0265

    CrossRef Google Scholar

    [16] X. Li, C. Zhang, Q. Ma and X. Ding, Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations, Int. J. Comput. Math., 2018, 95(12), 2511-2524. doi: 10.1080/00207160.2017.1408803

    CrossRef Google Scholar

    [17] Q. Ma, Structure-preserving numerical methods for several classes of stochastic differential equations, PhD thesis, Harbin Institute of Technology, 2013.

    Google Scholar

    [18] Q. Ma and X. Ding, Stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise, Appl. Math. Comput., 2015, 252, 520-534.

    Google Scholar

    [19] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing, Chichester, 1997.

    Google Scholar

    [20] R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. Ser. A-Math. Phys. Eng. Sci., 1999, 357(1754), 1021-1045. doi: 10.1098/rsta.1999.0363

    CrossRef Google Scholar

    [21] G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar

    [22] T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynamical systems, Jpn. J. Ind. Appl. Math., 2000, 17(1), 119-128. doi: 10.1007/BF03167340

    CrossRef Google Scholar

    [23] G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor., 2008, 41(4), 045206. doi: 10.1088/1751-8113/41/4/045206

    CrossRef Google Scholar

    [24] G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A: Math. Gen., 1996, 29(13), L341-L349. doi: 10.1088/0305-4470/29/13/006

    CrossRef Google Scholar

    [25] X. Wang and S. Gan, The improved split-step backward Euler method for stochastic differential delay equations, Int. J. Comput. Math., 2011, 88(11), 2359-2378. doi: 10.1080/00207160.2010.538388

    CrossRef Google Scholar

    [26] X. Wang, S. Gan and D. Wang, A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise, BIT Numer. Math., 2012, 52(3), 741-772. doi: 10.1007/s10543-012-0370-8

    CrossRef Google Scholar

    [27] A. Xiao and X. Tang, High strong order stochastic Runge-Kutta methods for Stratonovich stochastic differential equations with scalar noise, Numer. Algor., 2016, 72(2), 1-38.

    Google Scholar

    [28] W. Zhou, L. Zhang, J. Hong and S. Song, Projection methods for stochastic differential equations with conserved quantities, BIT Numer. Math., 2016, 56(4), 1497-1518. doi: 10.1007/s10543-016-0614-0

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(2536) PDF downloads(515) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint