[1]
|
L. Brugnano, F. Iavernaro and D. Trigiante, Energy and quadratic invariants-preserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 2012, 50(6), 2897-2916. doi: 10.1137/110856617
CrossRef Google Scholar
|
[2]
|
K. Burrage and P. M. Burrage, High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Appl. Numer. Math., 1996, 22(1-3), 81-101. doi: 10.1016/S0168-9274(96)00027-X
CrossRef Google Scholar
|
[3]
|
K. Burrage, P. M. Burrage and T. Tian, Numerical methods for strong solutions of stochastic differential equations: an overview, Proc. R. Soc. Lond. Ser. A, 2004, 460, 373-402. doi: 10.1098/rspa.2003.1247
CrossRef Google Scholar
|
[4]
|
W. Cai, H. Li and Y. Wang, Partitioned averaged vector field methods, J. Comput. Phy., 2018, 370, 25-42. doi: 10.1016/j.jcp.2018.05.009
CrossRef Google Scholar
|
[5]
|
C. Chen, D. Cohen and J. Hong, Conservative methods for stochastic differential equations with a conserved quantity, Int. J. Numer. Anal. Mod., 2016, 13, 435-456.
Google Scholar
|
[6]
|
Y. Chen, Y. Sun and Y. Tang, Energy-preserving numerical methods for Landau-Lifshitz equation, J. Phys. A: Math. Theor., 2011, 44(29), 295207. doi: 10.1088/1751-8113/44/29/295207
CrossRef Google Scholar
|
[7]
|
D. Cohen, G. Dujardin, Energy-preserving integrators for stochastic Poisson systems, Commun. Math. Sci., 2014, 12(8), 1523-1539. doi: 10.4310/CMS.2014.v12.n8.a7
CrossRef Google Scholar
|
[8]
|
X. Ding, Q. Ma and L. Zhang, Convergence and stability of the split-step θ-method for stochastic differential equations, Comput. Math. Appl., 2010, 60(5), 1310-1321. doi: 10.1016/j.camwa.2010.06.011
CrossRef Google Scholar
|
[9]
|
G. D. Fabritiis, M. Serrano, P. Español and P.V. Conency, Efficient numerical integrators for stochastic models, Phys. A, 2006, 361(2), 429-440. doi: 10.1016/j.physa.2005.06.090
CrossRef Google Scholar
|
[10]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer-Verlag, Berlin, 2006.
Google Scholar
|
[11]
|
J. Hong, D. Xu and P. Wang, Preservation of quadratic invariants of stochastic differential equations via Runge-Kutta methods, Appl. Numer. Math., 2015, 87, 38-52. doi: 10.1016/j.apnum.2014.08.003
CrossRef Google Scholar
|
[12]
|
J. Hong, S. Zhai and J. Zhang, Discrete gradient approach to stochastic differential equations with a conserved quantity, SIAM J. Numer. Anal., 2011, 49(5), 2017-2038. doi: 10.1137/090771880
CrossRef Google Scholar
|
[13]
|
C. Huang, Exponential mean square stability of numerical methods for systems of stochastic differential equations, J. Comput. Appl. Math., 2012, 236(16), 4016-4026. doi: 10.1016/j.cam.2012.03.005
CrossRef Google Scholar
|
[14]
|
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
Google Scholar
|
[15]
|
H. Li, Y. Wang and M. Qin, A sixth order averaged vector field method, J. Comput. Math., 2016, 34(5), 479-498. doi: 10.4208/jcm.1601-m2015-0265
CrossRef Google Scholar
|
[16]
|
X. Li, C. Zhang, Q. Ma and X. Ding, Discrete gradient methods and linear projection methods for preserving a conserved quantity of stochastic differential equations, Int. J. Comput. Math., 2018, 95(12), 2511-2524. doi: 10.1080/00207160.2017.1408803
CrossRef Google Scholar
|
[17]
|
Q. Ma, Structure-preserving numerical methods for several classes of stochastic differential equations, PhD thesis, Harbin Institute of Technology, 2013.
Google Scholar
|
[18]
|
Q. Ma and X. Ding, Stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise, Appl. Math. Comput., 2015, 252, 520-534.
Google Scholar
|
[19]
|
X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing, Chichester, 1997.
Google Scholar
|
[20]
|
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. Ser. A-Math. Phys. Eng. Sci., 1999, 357(1754), 1021-1045. doi: 10.1098/rsta.1999.0363
CrossRef Google Scholar
|
[21]
|
G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic Publishers, Dordrecht, 1995.
Google Scholar
|
[22]
|
T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynamical systems, Jpn. J. Ind. Appl. Math., 2000, 17(1), 119-128. doi: 10.1007/BF03167340
CrossRef Google Scholar
|
[23]
|
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A: Math. Theor., 2008, 41(4), 045206. doi: 10.1088/1751-8113/41/4/045206
CrossRef Google Scholar
|
[24]
|
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A: Math. Gen., 1996, 29(13), L341-L349. doi: 10.1088/0305-4470/29/13/006
CrossRef Google Scholar
|
[25]
|
X. Wang and S. Gan, The improved split-step backward Euler method for stochastic differential delay equations, Int. J. Comput. Math., 2011, 88(11), 2359-2378. doi: 10.1080/00207160.2010.538388
CrossRef Google Scholar
|
[26]
|
X. Wang, S. Gan and D. Wang, A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise, BIT Numer. Math., 2012, 52(3), 741-772. doi: 10.1007/s10543-012-0370-8
CrossRef Google Scholar
|
[27]
|
A. Xiao and X. Tang, High strong order stochastic Runge-Kutta methods for Stratonovich stochastic differential equations with scalar noise, Numer. Algor., 2016, 72(2), 1-38.
Google Scholar
|
[28]
|
W. Zhou, L. Zhang, J. Hong and S. Song, Projection methods for stochastic differential equations with conserved quantities, BIT Numer. Math., 2016, 56(4), 1497-1518. doi: 10.1007/s10543-016-0614-0
CrossRef Google Scholar
|