2019 Volume 9 Issue 5
Article Contents

Lu Li, Lun Wang, Guoqiang Wang, Na Li, Juli Zhang. LINEARIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR SEPARABLE CONVEX OPTIMIZATION OF REAL FUNCTIONS IN COMPLEX DOMAIN[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1686-1705. doi: 10.11948/20180256
Citation: Lu Li, Lun Wang, Guoqiang Wang, Na Li, Juli Zhang. LINEARIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR SEPARABLE CONVEX OPTIMIZATION OF REAL FUNCTIONS IN COMPLEX DOMAIN[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1686-1705. doi: 10.11948/20180256

LINEARIZED ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR SEPARABLE CONVEX OPTIMIZATION OF REAL FUNCTIONS IN COMPLEX DOMAIN

  • Corresponding author: Email address:lilu@sues.edu.cn(L. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11501055, 11801362)
  • The alternating direction method of multipliers (ADMM) for separable convex optimization of real functions in complex variables has been proposed recently [22]. Furthermore, the convergence and O(1/K) convergence rate of ADMM in complex domain have also been derived [23]. In this paper, a fast linearized ADMM in complex domain has been presented as the subproblems do not have closed solutions. First, some useful results in complex domain are developed by using the Wirtinger Calculus technique. Second, the convergence of the linearized ADMM in complex domain based on the Ⅵ is established. Third, an extended model of least absolute shrinkage and selectionator operator (LASSO) is solved by using linearized ADMM in complex domain. Finally, some numerical simulations are provided to show that linearized ADMM in complex domain has the rapid speed.
    MSC: 90C25, 65K10
  • 加载中
  • [1] J. Annemüller T.J. Sejnowski and S. Makeig, Complex spectral domain independent component analysis of electrocephalographic data, Independent Component Anal, Workshop, Japan: Nara, 2003.

    Google Scholar

    [2] V. D. Bos, Complex Gradient and Hessian, Vision, Image Signal Processing, IEEE Proceesing, 1994, 141(6), 380-383.

    Google Scholar

    [3] P. Bouboulis, Wirtinger's Calculus in general Hilbert Spaces, arXiv: 1005.5170v1, 2010.

    Google Scholar

    [4] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 2011, 3(1), 1-122.

    Google Scholar

    [5] D. H. Brandwood, A complex gradient operator and its application in adaptive array theory, Proceedings of the Institution of Electrical Engineers, 1983, 130(1), 11-16.

    Google Scholar

    [6] R. W. Cottle, F. Giannessi and J. L. Lions, Variational Inequalities and Complementarity Problems: Theory and Applications, Wiley, New York, 1980.

    Google Scholar

    [7] E. J. Cands, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal recognition from highly incomplete frequency information, IEEE Transactions on Information Theory, 2006, 52(2), 489-509. doi: 10.1109/TIT.2005.862083

    CrossRef Google Scholar

    [8] D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 2006, 52(4), 1289-1306. doi: 10.1109/TIT.2006.871582

    CrossRef Google Scholar

    [9] S. C. Dafermos, An iterative scheme for variational inequalities, Math. Programming, 1983, 26, 40-47. doi: 10.1007/BF02591891

    CrossRef Google Scholar

    [10] F. Gaetano, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Rendiconti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 1963, 34(2), 138-142.

    Google Scholar

    [11] R. Glowinski, J. L. Lions and R. Tremoliérès, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.

    Google Scholar

    [12] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Second Edition, Springer, 2009.

    Google Scholar

    [13] B. S. He, L. Z. Liao, D. R. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Progr., 2002, 92, 103-118. doi: 10.1007/s101070100280

    CrossRef Google Scholar

    [14] B. S. He, F. Ma and X. M. Yuan, Linearized alternating direction method of multipliers via positive-indefinite proximal regularization for convex programming, http://www.optimization-online.org/DB_HTML/2016/07/5569.html.

    Google Scholar

    [15] B. S. He and X. M. Yuan, On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 2012, 50(2), 700-709. doi: 10.1137/110836936

    CrossRef Google Scholar

    [16] T. Hinamoto, A. Doiand W.-S. Lu, Realization of 3-D separable-denominator digital filters with low l2-sensitivity, IEEE Trans. Signal Processing, 2012, 60(12), 6282-6293. doi: 10.1109/TSP.2012.2215027

    CrossRef Google Scholar

    [17] A. N. Iusem, An iterative algorithm for the variational inequality problem, Comput. Appl. Math., 1994, 13, 103-114.

    Google Scholar

    [18] B. Jiang, S. Q. Ma and S. Z. Zhang, Alternating direction method of multipliers for real and complex polynomial optimization models, Optimization, 2014, 63(6), 883-898. doi: 10.1080/02331934.2014.895901

    CrossRef Google Scholar

    [19] E. N. Khobotov, A modification of the extragradient method for the solution of variational inequalities and some optimization problems, USSR Comput. Math. Math. Phys., 1987, 27, 1462-1473.

    Google Scholar

    [20] C. N. K. Mooers, A technique for the cross spectrum analysis of pairs of complex-valued time series. with emphasis on properties of polarized components and rotational invariants, Deep-Sea Research, 1973, 20, 1129-1141.

    Google Scholar

    [21] M. Li, D. F. Sun and K. C. Toh, A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization, SIAM J. Optimization, 2016, 26, 922-950. doi: 10.1137/140999025

    CrossRef Google Scholar

    [22] L. Li, X. Y. Wang and G. Q. Wang, Alternating direction method of multipliers for separable convex optimization of real functions in complex variables, Mathematical Problems in Engineering, vol. 2015, Article ID 104531, 14 pages, 2015.

    Google Scholar

    [23] L. Li, G. Q. Wang and J. L. Zhang, On the O(1/K) Convergence Rate of Alternating Direction Method of Multipliers in Complex Domain, Australian and New Zealand Industrial and Applied Mathematics Journal, 2018.

    Google Scholar

    [24] X. X. Li, L. L. Mo, X. M. Yuan and J. Z. Zhang, Linearized alternating direction method of multipliers for sparse group and fused LASSO models, Computational Statistics and Data Analysis, 2014, 79, 203-221. doi: 10.1016/j.csda.2014.05.017

    CrossRef Google Scholar

    [25] J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, 2004 IEEE International Conference on Robotics and Automation, 2004, 284-289.

    Google Scholar

    [26] W. S. Lu and T. Hinamoto, Two-dimensional digital filters with sparse coefficients, Miltimimensional Systems and Signal Processing, 2011, 22(1-3), 173-189. doi: 10.1007/s11045-010-0129-9

    CrossRef Google Scholar

    [27] S. Osher, Y. Mao, B. Dong and W. Yin, Fast linearized Bregman iterations for compressed sensing and sparse denoising, Commun. Math. Sci., 2010, 8, 93-111. doi: 10.4310/CMS.2010.v8.n1.a6

    CrossRef Google Scholar

    [28] Y. y. Ouyang, Y. M. Chen, G. H. Lan and Eduardo Pasiliao JR, An Accelerated Linearized Alternating Direction Method of Multipliers, SIAM J. Imaging Sci., 2015 8(1), 644-681. doi: 10.1137/14095697X

    CrossRef Google Scholar

    [29] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals, Cambridge University Press, UK, 2010.

    Google Scholar

    [30] L. Sorber, M. V. Barel and L. D. Lathauwer, Unconstrained optimization of real functions in complex variables, SIAM Journal on Optimization, 2012, 22(3), 879-898. doi: 10.1137/110832124

    CrossRef Google Scholar

    [31] J. F. Sturm, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optimization Methods and Software, 1999, 11(1-4), 625-653.

    Google Scholar

    [32] K. C. Toh, M. J. Todd and R. H. Tütüncü, SDPT3a MATLAB software package for semidefinite programming, version 1.3, Optimization Methods and Software, 1999, 11(1-4), 545-581. doi: 10.1080/10556789908805762

    CrossRef Google Scholar

    [33] R. Tibshirani, Regression shrinkage and selection via the lasso Journal of the Royal Statistical Society, Series B. 1996, 58, 267-288.

    Google Scholar

    [34] G. Tauböck, Complex noise analysis of DMT. IEEE Transactions on Signal Processing, 2007, 55(12), 5739-5754. doi: 10.1109/TSP.2007.901138

    CrossRef Google Scholar

    [35] J. F. Yang and X. M. Yuan, Linearized Augmented Largangian and Alternating Direction Methods for Nuclear Norm Minimization, Mathematics of Computaion, 2013, 82, 301-329.

    Google Scholar

    [36] Z. Z. Yang and Z. Yang, Fast linearized alternating direction method of multipliers for the augmented l1-regularized problem, Signal, Image and Video Processing, 2015, 9(7), 1601-1612. doi: 10.1007/s11760-014-0617-8

    CrossRef Google Scholar

    [37] L. Zhao and S. Dafermos, General economic equilibrium and variational inequalities, Oper. Res. Lett., 1991, 10, 369-376. doi: 10.1016/0167-6377(91)90037-P

    CrossRef Google Scholar

    [38] X. Q. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imag. Sci., 2010, 3(3), 253-276. doi: 10.1137/090746379

    CrossRef Google Scholar

    [39] X. Q. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 2010, 46(1), 20-46.

    Google Scholar

Figures(4)  /  Tables(2)

Article Metrics

Article views(2870) PDF downloads(553) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint